Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/25080
Title: Numerical Investigation of Fluid Flow and In-Cylinder Air Flow Characteristics for Higher Viscosity Fuel Applications
Authors: Hamid M.F.
Idroas M.Y.
Sa'ad S.
Heng T.Y.
Mat S.C.
Alauddin Z.A.Z.
Shamsuddin K.A.
Shuib R.K.
Abdullah M.K.
Issue Date: 2020
Publisher: Processes
Citation: Hamid, M.F., Idroas, M.Y., Sa'ad, S., Heng, T.Y., Mat, S.C., Alauddin, Z.A.Z., Shamsuddin, K.A., Shuib, R.K., Abdullah, M.K. Numerical investigation of fluid flow and in-cylinder air flow characteristics for higher viscosity fuel applications (2020) Processes, 8 (4). DOI: 10.3390/PR8040439
Abstract: Generally, the compression ignition (CI) engine that runs with emulsified biofuel (EB) or higher viscosity fuel experiences inferior performance and a higher emission compared to petro diesel engines. The modification is necessary to standard engine level in order to realize its application. This paper proposes a guide vane design (GVD), which needs to be installed in the intake manifold, is incorporated with shallow depth re-entrance combustion chamber (SCC) pistons. This will organize and develop proper in-cylinder airflow to promote better diffusion, evaporation and combustion processes. The model of GVD and SCC piston was designed using SolidWorks 2017; while ANSYS Fluent version 15 was utilized to run a 3D analysis of the cold flow IC engine. In this research, seven designs of GVD with the number of vanes varied from two to eight vanes (V2–V8) are used. The four-vane model (V4) has shown an excellent turbulent flow as well as swirl, tumble and cross tumble ratios in the fuel-injected region compared to other designs. This is indispensable to break up heavier fuel molecules of EB to mix with the air that will eventually improve engine performance.  
URI: http://hdl.handle.net/123456789/25080
Appears in Collections:Conference Papers



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.