Document No: UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

CONFIDENTIAL

SET B

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2013 SESSION

SUBJECT CODE : FSB 33503 / FSB 43503

SUBJECT TITLE : IMAGE PROCESSING

LEVEL : BACHELOR

TIME / DURATION : 3 HOURS

DATE :

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections, Section A and B. Answer ALL questions in Section A. For Section B, answer two (2) questions only.
- 6. Answer all questions in English.
- 7. Graph paper is appended.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) List two (2) areas of image processing application. Give an example of each application

(4 marks)

(b) Briefly explain the steps to rotate the image in Figure 1. (Assume the given image is RGB)

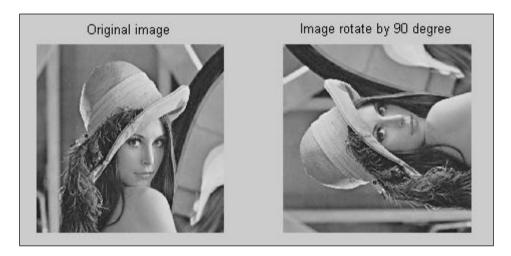


Figure 1: The image of Lena

(5 marks)

(c) Give two broad techniques of image enhancement

(2 marks)

(d) Figure 2 shows image enhancement using median filter, write the matlab code to remove the noise by using this filter (assume you need to add the noise using salt and paper techniques and the filename is "ceiling.tif")

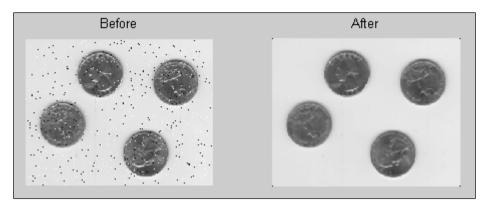


Figure 2: Image enhancement using median filter

(9 marks)

Question 2

(a) Explain in detail about image segmentation.

(5 marks)

(b) Dilation and erosion are two fundamental morphological operations. Based on the following codes, show the output for each line.

```
Line1: BW = zeros(10,10);
Line2: BW(3:6,3:8) = 1
Line3: SE = strel('square',3)
Line4: BW2 = imdilate(BW,SE)
Line5: BW2 = imerode(BW,SE)
(7 marks)
```

(c) In image processing, a technique known as median filter 3 x 3 neighborhoods could be used to enhance the quality of an image. A representation of an image is shown in Figure 3.

```
182
                                               184
                                                            107
      115
             166
                    171
                          144
                                 127
                                        175
                                                     135
191
      198
             103
                    103
                          138
                                 168
                                        125
                                               125
                                                     183
                                                            105
             185
112
      196
                    127
                          177
                                 166
                                        151
                                               182
                                                     159
                                                            153
192
      149
                    104
                                                     155
                                                            178
             194
                          180
                                 116
                                        170
                                               124
163
      180
             168
                    109
                           118
                                 112
                                        189
                                               193
                                                     192
                                                            194
             176
                                        196
109
      114
                    183
                          149
                                 150
                                               135
                                                     128
                                                            113
128
      142
             175
                    170
                          145
                                 196
                                        155
                                               119
                                                     176
                                                            157
155
      192
                    132
                                                     176
                                                            147
             139
                          165
                                 134
                                        114
                                               125
196
      180
             166
                    195
                          171
                                 159
                                        115
                                               162
                                                     138
                                                            101
197
      196
                    103
                           176
                                 122
                                        126
                                               147
                                                     157
                                                            134
             117
```

Figure 3: Matrix 10 * 10 image

For each of the following coordinate, explain by using illustrated figure the steps taken when we apply the median filter technique above. Show all your detail steps. (*Note: use replicate border pixels where applicable*)

i. (1,1)

(3 marks)

ii. (2:3,10)

(5 marks)

SECTION B (Total: 60 marks)

INSTRUCTION: Answer TWO (2) questions only.

Please use the answer booklet provided.

Question 3

(a) State two major problems that may affect the result of segmentation.

(2 marks)

- (b) Describe the following morphological operations for binary images and give an example of their use in image processing:
 - i. Dilate image
 - ii. Closing

(4 marks)

(c) Connectivity refers to the way in which we define an object. There are three (3) ways to define the connectivity. Name and draw the diagram of the connectivity.

(6 marks)

(d) The image of rice grains shown in Figure 4(a), illustrates how you can enhance an image to correct non-uniform illumination. Write the Matlab code to read the image of rice grains and display it. (Assume the filename of the image is "rice.png").

(4 marks)

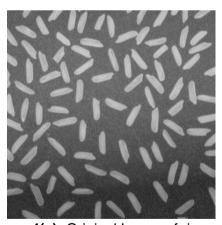


Figure 4(a): Original Image of rice grains

(e) The image and background are of class uint8 for Figure 4(b). Write the Matlab function code, IMSUBTRACT to subtract the background and display the output.

(4 marks)

Figure 4(b): Image of rice grains after subtraction

(f) Figure 4(b) shows a darker image after subtraction. Write the Matlab code to enhance the image and display it as shown in Figure 4(c).

(4 marks)

Figure 4(c): Image of rice grains after enhancement

(g) Write the Matlab code to convert the image to binary image as shown in Figure 4(d) and display it.

(6 marks)

Figure 4(d): Binary Image of rice grains

Question 4

- (a) Briefly explain about image enhancement and why we need to enhance the image. (5 marks)
- (b) List the two techniques of point processing in image enhancement (5 marks)
- (c) One way to enhance image is by reducing the pixel values using 3 by 3 neighborhood operations of minimum value. By using matrix image in Figure 5, show the steps to enhance the image at coordinate (2, 2).

	1	2	3	4	5
1	6	216	80	84	138
2	25	253	88	66	20
3	208	46	50	150	35
4	243	47	132	189	211
5	136	232	7	0	4

Figure 5: A matrix image of 5*5 scales

(5 marks)

.

(d) Linear filtering of an image is accomplished through an operation called convolution.

Based on the matrix image in **Table 1**, explain the four steps to compute the (3, 3) pixel convolution operation

(15 marks)

Table 1: The matrix of image A and the kernel

	1	2	3	4	5
1	136	11	139	65	97
2	42	37	40	140	83
3	90	19	118	53	49
4	86	145	18	48	143
5	54	61	99	19	129

Matrix Image A

8	1	6
3	5	7
4	9	2

Kernel

Question 5

(a) State the definition of transformation and why it is needed.

(4 marks)

- (b) Give the definition of the following term in an image processing perspective:
 - i. Translation
 - ii. Rotation
 - iii. Scaling

(6 marks)

(c) Write the matlab code using **for loop** to transform the image from 'Before' to 'After' in Figure 6. (The size of image is 291*240 pixel, the filename of the image is 'pout.tif')

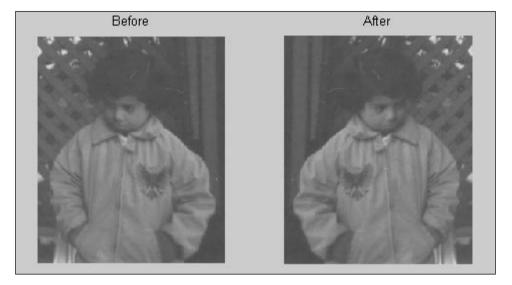


Figure 6: The image of Pout

(10 marks)

(d) Using homogenous composite transformation matrix, get the final point of P (8, 2) if the point is rotated by 60 degrees, then translate by (-3, 4), and finally scaled by the scale factor (2, 0.5).

(10 marks)

END OF QUESTIONS