SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION JANUARY 2014 SESSION

SUBJECT CODE

: FED 10102

SUBJECT TITLE

: ELECTRICAL FUNDAMENTAL

LEVEL

: DIPLOMA

TIME / DURATION

: 3.0 HOURS 9.00 am - 12.00 noon

DATE

2 7 MAY 2014

INSTRUCTIONS TO CANDIDATE

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

In **Figure 1**, given the resistors values, $R1 = 1 k\Omega$, $R2 = 3.3 k\Omega$ and $R3 = R4 = 100 \Omega$:

(a) Determine the 4-band color code for resistors, R1, R2, R3 and R4 with 5% tolerance.

(b) Calculate the equivalent resistance, R_{AB} between point A and B. (6 marks)

(c) Explain briefly Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL) (4 marks)

(d) Define voltage, V and current, I, and state their units (4 marks)

Figure 1

(6 marks)

Question 2

Based on circuit of Figure 2, calculate:

(a) the currents, i_1 , i_2 , i_3 and i_4 . (6 marks)

(b) the voltage drop across resistors $10~\Omega$ and $30~\Omega$

(4 marks)

Figure 2

Question 3

Three lamps A, B and C as shown in **Figure 3** are connected in series across an 18 V supply. Lamp A has an internal resistance R_A , lamp B has an internal resistance R_B , and lamp C has an internal resistance R_C . If the total resistance is 36 Ω , voltage drop across R_B is $V_B = 5V$, and voltage drop across R_C is $V_C = 3V$, determine:

- (a) The total current in the circuit (3 marks)
- (b) The value of resistances $R_{\!\scriptscriptstyle A}$, $R_{\!\scriptscriptstyle B}$, and $R_{\!\scriptscriptstyle C}$ (6 marks)
- (c) Power dissipated on each resistor $R_{\rm A}$, $R_{\rm B}$, and $R_{\rm C}$ (6 marks)

Figure 3

Question 4

Based on the circuit shown in **Figure 4**, fill up **Table 1** with the related values of voltage, current, resistance, and power dissipated. Show all your works.

(Fill-up the answer in Appendix 1 and submit the page with your answer booklet).

Figure 4

Table 1

	R ₁	R ₂	R ₃	TOTAL
Voltage, V				
Current, I				
Resistor, R	220 Ω	130 Ω	470 Ω	
Power, P				

(15 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer only TWO (2) questions

Please use the answer booklet provided.

Question 5

By using the source transformation method on Figure 5:

(a) Determine the current through the 8Ω resistor. Indicate the current direction. (7 marks)

(b) Determine the voltage, V_0

(3 marks)

(c) Verify your answer in (a) and (b) by using nodal analysis method.

(10 marks)

Figure 5

Question 6

(a) Calculate the branch currents I_1 , I_2 , and I_3 in the circuit of **Figure 6** by using mesh analysis technique. Given, the resistance $R_1 = 10 \ \Omega$, $R_2 = 20 \ \Omega$, $R_3 = 15 \ \Omega$ and voltage

$$V_1 = 15 V$$
, $V_2 = 25 V$ (10 marks)

(b) Verify your answer in (a) by using superposition theorem (10 marks)

Figure 6

Question 7

Based on Figure 7:

(a) Determine the Thevenin equivalent circuit of the circuit shown in Figure 7, to the left of the terminals a-b (10 marks)

- (b) Draw the circuit determined in (a) (4 marks)
- (c) Calculate the current I_L , through load resistor for $R_L = 6 \Omega \& 36 \Omega$ (6 marks)

Figure 7

END OF QUESTION PAPER

APPENDIX 1

Answer Table for Question 4

P	R ₁	R ₂	R ₃	TOTAL
Voltage, V				
Current, I				
Resistor, R	220 Ω	130 Ω	470 Ω	
Power, P				

(SUBMIT WITH ANSWER BOOKLET)