Document No : UniKL MFI\_SD\_AC41 Revision No: 02 Effective Date: 01 December 2008



SET A



### UNIVERSITI KUALA LUMPUR

**MALAYSIA FRANCE INSTITUTE** 

# FINAL EXAMINATION JULY 2010 SESSION

SUBJECT CODE

: FCB 16102

SUBJECT TITLE

FLUID MECHANICS

LEVEL .~~

BACHELOR

TIME/DURATION

: 12.30pm - 2.30pm

(2 HOURS)

DATE

: 09 NOVEMBER 2010

#### INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer THREE (3) question only.
- 6. Answer all questions in English.

THERE ARE 12 PRINTED PAGES OF QUESTIONS.

#### **SECTION A**

INSTRUCTION: Answer ALL questions.

Question 1-10 are multiple choice questions: choose the best possible answer/answers for each of the following question.

Use the <u>answer table</u>, provided in <u>appendix</u> to mark your answers. Do not forget to attach answer table with your answer booklet

#### Question 1

A uniform solid body weighs 4 kg in air and 3.5 kg in water. What is its specific gravity?

- A. 4.
- B. 7.5.
- C. 8.
- D. 0.5
- E. Can not be determined

(1 mark)

#### Question 2

A beaker of 7inch inside diameter and 9 inch inside height weighs 13 oz when empty and 190 oz when filled with a liquid. What is the density of the liquid in SI units? (You may use unit conversion tables given in Appendix 1)

- A.  $607.5 \text{ kg/m}^3$
- B. 884.1 kg/m<sup>3</sup>
- C. 230 kg/m<sup>3</sup>
- D. 177 kg/m<sup>3</sup>
- E. None of the above

The absolute viscosity  $\mu$  of a fluid is primarily a function of :

- A. density
- B. temperature
- C. pressure
- D. viscosity
- E., none of the above

(1 mark)

#### Question 4

An oil has a kinematic viscosity of 1.25E-4 m<sup>2</sup>/s and a specific gravity of 0.8. What is the absolute viscosity in kg/m-s units?

- A. 0.08 kg/m-s
- B. 0.10 kg/m-s
- C. 0.125 kg/m-s -
- D. 1.00 kg/m-s
- E. none of the above

(1 mark)

#### Question 5

Two parallel plates, one moving at 4m/s and the other stationary, are separated by a 5 mm thick layer of oil with specific gravity 0.80 and kinematic viscosity  $1.25 \, \text{E} - 4 \, \text{m}^2/\text{s}$ . What is the average shear stress in the oil

- A. 80 Pa
- B. 100 Pa
- C. 125 Pa
- D. 160 Pa
- E. none of the above

As long as there is no shear stress, the pressure is independent of direction. This statement is known as:

- A. Newton's law
- B. Chanrles' law
- C. Boyle's law
- D. Pascal's law
- E. None of the above

(1 mark)

#### Question 7 🕹

Gauge pressure is negative when

- A. Atmospheric pressure is less than Absolute pressure
- B. Absolute pressure is less than Atmospheric pressure
- C. Atmospheric pressure is same as Absolute pressure
- D. Gauge pressure cannot be negative

(1 mark)

#### Question 8

A flow in which velocity or pressure at a point does no change with time is called:

- A. Uniform flow
- B. Non-uniform flow
- C. steady flow
- D. unsteady flow
- E. none of the above

Which is true for streamline of a flow?

- A. they are lines joining points of equal velocity
- B. fluid cannot cross a streamline
- C. Streamlines cannot cross each other
- D. All of the above are correct

(1 mark)

#### Question 10

How is friction accounted in the usual calculations involving principle of conversion of energy?

- .A. As 10% of total energy
- B. As 10% of total energy
- G. As 10% of total energy
  - D. Neglected

#### **SECTION B**

Answer any 3 questions in this section.

#### Question 11

a) The mean free path of a gas,ℓ, is defined as the average distance traveled by molecules between collisions. A proposed formula for estimating ℓ of an ideal gas is

$$\ell = 1.26 \frac{\mu}{\rho \sqrt{RT}}$$

What are the dimensions of the constant 1.26?

Use the formula to estimate the mean free path of air at 20°C and 7 kPa Please refer to Appendix 2 for the properties of air

b) A near ideal gas has a molecular weight 44 and a specific heat c<sub>v</sub>=610 J/kg K. Your are reminded the following equations (with its usual notations)

$$c_p - c_v = R$$

$$C_p/C_v=k$$

$$R = R_u/M$$
 where  $R_u = 8314 \text{ m}^2/(\text{s}^2\text{K})/49700 \text{ ft}^2/(\text{s}^2 \,^{\circ}\text{R})$ 

$$a = (kRT)^{1/2}$$

- i) What are its specific heat ratio k and its speed of sound in SI units at 100°C?
- ii) What are its specific heat ratio k and its speed of sound in imperial units at 100°C

(10 marks)

#### Question 12

a) The system in the following figure (Figure Q12-a) is at 20  $^{\circ}$ C. If the atmospheric pressure is 101.33 kPa and the pressure at the bottom of the tank is 260 kPa, what is the specific gravity of the fluid X

Densities:

SAE 30 oil = 
$$891 \text{ kg/m}^3$$

Mercury =  $13550 \text{ kg/m}^3$ 

Water

 $= 998 \text{ kg/m}^3$ 



Figure Q12 -a

b) The U-tube in the following figure (Figure Q12-b) has a 2 cm ID and contains mercury as shown. If 30 cm<sup>3</sup> of water is poured into the right-hand leg, what will be the free –surface height in each leg from the bottom of the U-tube.



(10 marks)

- The pressure head in a gas main at a point 100 m above sea level is equivalent to 200 mm of water. Assuming that the densities of the air and gas remain constant and equal to 1.202 kg m<sup>-3</sup> and 0.561 kg m<sup>-3</sup>, respectively, what will be the pressure head in mm of water at sea level?
- b) In the following figure (Figure Q13-b) fluid P is water and fluid Q is mercury. If the specific weight of mercury is 13.6 times that of water, and atmospheric pressure is  $101.3 \text{ kN m}^{-2}$  what is the absolute pressure at A in kPa when  $h_1$ =20 cm and  $h_2$  = 10 cm?



(10 marks)

#### Question 14

- a) Water flows though a pipe AB 1.0 m in diameter at 3 ms<sup>-1</sup> and passes through a pipe BC which is 1.2 m in diameter. At C the pipe forks. Branch CD is 0.6 m in diameter and carries one third of the flow in AB. The velocity in the other branch CE is 2.5 ms<sup>-1</sup> Find
  - i. Volume flow rate of flow in AB
  - ii. The velocity in BC
  - iii. The velocity in CD

#### iv. The diameter of CE

b) A Pitot- tube is used to measure air velocity. If a manometer is connected to the instrument indicates a difference in pressure head between tapings of 1.8 mm of water calculate the air velocity assuming the coefficient of Pitot tube to be unity.

Density of air = 1.2 kgm<sup>-3</sup>

(10 marks)

#### Question 15

a) Air flows thorough a rectangular duct which is 400 mm wide by 300 mm deep in cross section. To determine the volume flow rate of flow experimentally the cross section is divided into a number of imaginary rectangular elements of equal area and the velocity measured at the centre of each element (ms<sup>-1</sup>) with the following result

| Distance   | Distance from side of duct (mm) |     |     |     |     |  |  |  |
|------------|---------------------------------|-----|-----|-----|-----|--|--|--|
| from       | ^ .                             |     |     |     |     |  |  |  |
| bottom of  | 40                              | 120 | 200 | 280 | 360 |  |  |  |
| duct (mm)- |                                 |     | *   |     |     |  |  |  |
| 30         | 1.5                             | 1.9 | 2.1 | 1.9 | 1.6 |  |  |  |
| 90         | 1.8                             | 3.3 | 6.8 | 3.6 | 1.9 |  |  |  |
| 150        | 2.0                             | 6.7 | 9.9 | 6.9 | 2.2 |  |  |  |
| ≥ 210      | 1.9                             | 3.4 | 6.9 | 3.7 | 2.0 |  |  |  |
| 270        | 1.7 -                           | 1.9 | 2.2 | 2.0 | 1.8 |  |  |  |

Table Q15- Velocity measurements at various points in a duct

Calculate the volume flow rate of flow and the mean velocity in duct.

b) The suction pipe of a pump rises at a slope of 1 vertical in 5 along the pipe and water passes through it at 2.2 ms<sup>-1</sup>. If dissolved air is released when the pressure falls to more than 68 kNm<sup>-2</sup> below atmospheric pressure, find the greatest practical length of suction pipe. Neglect friction and assume water in the sump is at rest.

(10 marks)

#### **END OF QUESTION**

# **Appendix 1**

## **Unit Conversion Tables**

| Lengths            |                                                     |                             |                            |                          |                             |
|--------------------|-----------------------------------------------------|-----------------------------|----------------------------|--------------------------|-----------------------------|
| 1 ft               | = 0.3048 m                                          | × 12 in                     | = 0.3333 yd                |                          |                             |
| 1 m                | = 3.28084 ft                                        | = 39.37008 in               |                            |                          |                             |
| 1 mi               | = 5,280 ft                                          | = 1,760 yd                  | = 1,609.34 m               | = 1.60934 km             | = 320 rd                    |
| Areas              |                                                     |                             |                            | 1                        |                             |
| 1 ft <sup>2</sup>  | = 0.09290 m <sup>2</sup>                            | = 144 in <sup>2</sup>       | = 0.11111 yd <sup>2</sup>  |                          |                             |
| 1 m <sup>2</sup>   | = 1550 in <sup>2</sup>                              | = 10.7639 ft <sup>2</sup>   | = 1.19599 yd <sup>2</sup>  |                          |                             |
| 1 acre             | = 43,560 ft <sup>2</sup>                            | = 4,840 yd <sup>2</sup>     | = 0.40469 ha (hectare)     | = 4046.87 m <sup>2</sup> | = 0.001563 mi <sup>2</sup>  |
| 1 mi <sup>2</sup>  | = 640 acres                                         | = 3,097,600 yd <sup>2</sup> | = 2,589,988 m <sup>2</sup> | = 2.5899 km <sup>2</sup> | = 258.99 ha                 |
| 1 km²              | ± 0.38610 mi <sup>2</sup>                           | = 247.104 acre              | = 100 ha                   |                          |                             |
| Masses and weight  | \$                                                  |                             |                            |                          |                             |
| 1 lb               | = 0.45359 kg<br>= 0.000464 long ton                 | = 16 oz                     | = 14.5833 oz (troy)        | = 0.0005                 | ton = 7000 grains           |
| 1 kg               | = 2.2046 lb av<br>= 0.901 m ton                     | = 2.6792 lb tr (troy)       | = 35.274 oz av             | = 15,432.4 grains        | = 0.00110 ton               |
| 1 ton              | = 2,000 lb                                          | = 907.185 kg                | = 32,000 oz                | = 0.90722 m ton          |                             |
| Volume and capacit | ly                                                  |                             |                            |                          |                             |
| 1 ft <sup>3</sup>  | = 1728 in <sup>3</sup>                              | = 0.03704 yd <sup>3</sup>   | = 0.028317 m <sup>3</sup>  | = 29.9221 qt (liq)       | = 7.4806 gal (liq)          |
| -                  | = 6.229 Imp gal (Br)                                | = 0.80356 bu                |                            | 100                      |                             |
| 1 yd <sup>3</sup>  | = 46,656 in<br>= 21.6962 bu (bushel)                | = 27 ft <sup>3</sup>        | = 0.76456 m <sup>3</sup>   | = 807.896 qt (liq)       | = 201.974 gal (liq          |
| 1 gal (liq)        | = 231 in <sup>3</sup>                               | = 0.13368 ft <sup>3</sup>   | = 4 qt                     | = 0.83268 Imp gal        | = 0.00378543 m <sup>3</sup> |
| 1 m <sup>3</sup>   | = 61,023 in <sup>3</sup><br>= 1.308 yd <sup>3</sup> | = 35,314 tt <sup>3</sup>    | = 1056.7 qt (liq)          | = 264.18 gal             | = 28.38 bu                  |

Table 2 Conversion Factors for Thermal Conductivity

(Multiply units of left column by appropriate factor\* in table to obtain results in units designated at top of vertical column)

|                 | Btu/h-ft-°F | Btu-in/h-ft-°F | W/m-°C  | W/cm+°C         | cal/s-cm-°C    | kcal/h-m-°C |
|-----------------|-------------|----------------|---------|-----------------|----------------|-------------|
| Btw/fi-tt-°F    | 1.0000      | 12.000         | 1.72958 | 0.017296        | 4.13378 x E-03 | 1.48816     |
| Btu-in/h-ft2-°F | 0.0833      | 1.000          | 0.14413 | 1.441314 x E-03 | 3.44481 x E-04 | 0.124013    |
| W/m°-C          | 0.57818     | 6,9381         | 1.000   | 0.001           | 2.39006 x E-03 | 0.860422    |
| W/cm.°C         | 57.8175     | 693.810        | 100.000 | 1.000           | 0.23901        | 86.0422     |
| cal/s-cm-°C1    | 241.9090    | 2902.91        | 418.40  | 4.18400         | 1.000          | 360.000     |
| kcal/h·m·°C+    | 0.671971    | 8.06365        | 1.16222 | 0.011622        | 2.77778 x E-03 | 1.000       |
|                 |             |                |         |                 |                |             |

Table 3 Conversion Factors of Coefficients of Heat Transfer

(Multiply units of left column by appropriate factor\* in table to obtain results in units designated at top of vertical column)

|                           | Btu/h-ft2.*F | W/m²•°C       | W/cm²-°C       | kcal/h-m-°C | cal/s • cm² • ° C |
|---------------------------|--------------|---------------|----------------|-------------|-------------------|
| Btw/h-ft2.°F              | 1.0000       | 5.67446       | 5.67446 x E-04 | 4.88243     | 1.35623 x E-04    |
| W/m².°C                   | 0.17623      | 1.000         | 1.0 x E-04     | 0.86042     | 2.3900 x E-03     |
| W/cm².°C                  | 1762.28      | 1.0 x E+04    | 1.000          | 8604.20     | 0.2390            |
| kcal/h·m².°C              | 0.20482      | 1.16222       | 1.16222 x E-04 | 1.000       | 2.77778           |
| cal/s-cm <sup>2</sup> .°C | 7373.38      | 4.1840 x E-04 | 4.1840         | 3.6000      | 1.000             |

| J      | 9.478 x E-04   | 1.0000        | 2.11110 A E-UI | £.03000 A E 0 / |               |
|--------|----------------|---------------|----------------|-----------------|---------------|
| kWh    | 3414.43        | 3.6 x E+06    | 1.0000         | 860.420         | 2.6552 x E+06 |
| · kcal | 3.9656         | 4184.0        | 1.16222 x E-03 | 1.0000          | 3086.54       |
| hp-h_  | 2547.16        | 2.6864 x E-06 | 0.7457         | 641.6           | 1.9808 x E-06 |
| ft-lbf | 1.28592 x E-03 | 1.355818      | 3.76616 x E-07 | 3.2405 x E-04   | 1.0000        |

| Table | 5 | Conversion | Factors for | Energy in | Relation 1 | to Time and Area |
|-------|---|------------|-------------|-----------|------------|------------------|
|-------|---|------------|-------------|-----------|------------|------------------|

(Multiply units of left column by appropriate factor" in table to obtain results in units designated at top of vertical column)

|                       | Btu/h-ft² | Btu/h-m² | W/tt²    | W/m²     | kcal/h-m² | Btu/s-ft2      |
|-----------------------|-----------|----------|----------|----------|-----------|----------------|
| Btu/h-ft <sup>2</sup> | 1.0000    | 10.7639  | 0.29288  | 3.15248  | 2.71428   | 2.77778 x E-04 |
| Btu/h-m <sup>2</sup>  | 0.092903  | 1.0000   | 0.027209 | 0.29288  | 0.251996  | 2.58064 x E-05 |
| W/ft²                 | 3.41443   | 36.7526  | 1.0000   | 10.76391 | 9.26142   | 9.48453 x E-04 |
| W/m²                  | 0.31721   | 3.41442  | 0.092903 | 1.0000   | 0.86042   | 8.81138 x E-05 |
| kcal/h-m <sup>2</sup> | 0.36867   | 3,96832  | 0.10797  | 1.16222  | 1.0000    | 1.02408 x E-04 |
| Btu/s-ft <sup>2</sup> | 3600.0    | 38750.0  | 1054.35  | 11348.9  | 9764.85   | 1.0000         |

|                       | (lb/ft³)      | (g/cm³)      | (kg/m³)    | (lb/gal)    |
|-----------------------|---------------|--------------|------------|-------------|
| lb/ft³                | 1.000         | = 0.0160185  | = 16.01846 | = 0.133680  |
| g/cm <sup>3</sup>     | 62.428        | = 1.000      | = 1000.0   | = 8.34538   |
| kg/m³                 | 0.062428      | = 0.001      | = 1.000    | = 0.008345  |
| lb/gal                | 7.4805        | = 0.11982    | = 119.82   | = 1.000     |
| Enthalpy and energy   | per unit mass |              |            |             |
| -                     | (Btu/lb)      | (kcal/kg)    | (J/g)      | (w-h/kg)    |
| Btu/lb                | 1.000         | = 0.555556   | = 2.32444  | = 0.645679  |
| kcal/kg               | 1.799         | = 1.000      | = 4.184    | = 1.16222   |
| J/g                   | 0.430210      | = 0.239006   | = 1.000    | = 0.277778  |
| w-h/kg                | 1.54876       | = 0.860422   | = 3.600 ·  | = 1.000     |
| Specific heat and ent | гору          |              |            |             |
|                       | (Btu/lb+°R)   | (kcal/kg•°K) | (kJ/kg•°K) | (w-h/kg+°K) |
| kcal/kg-°K            | 1.000         | = 1.000      | = 4.184    | = 1.16222   |
| kJ/kg·°K              | 0.239006      | = 0.239006   | = 1.000    | = 0.277778  |
| w-h/kg-°K             | 0.860422      | = 0.860422   | = 3.600    | = 1.000     |

# **Appendix 2**

### Properties of Air

| $\rho$ , kg/m <sup>3</sup>              | $\mu$ , N·s/m <sup>2</sup> | $\nu$ , m <sup>2</sup> /s                                                                                                                                   | T, °F                                                                                                                                                                                                                | $\rho$ , slug/ft <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                      | $\mu$ , lb · $1/\Pi^2$                                                                                                                                                                                                                                                                                                                                          | », ft²/s                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | 1.51 E-5                   | 0.99 E-5                                                                                                                                                    | -40                                                                                                                                                                                                                  | 2.94 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 3.16 E-7                                                                                                                                                                                                                                                                                                                                                        | 1.07 E-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100000000000000000000000000000000000000 | 1.71 E-5                   | 1.33 E-5                                                                                                                                                    | 32                                                                                                                                                                                                                   | 2.51 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 3.58 B-7                                                                                                                                                                                                                                                                                                                                                        | 1.43 E-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 1.80 E-5                   | 1.50 E-5                                                                                                                                                    | 68                                                                                                                                                                                                                   | 2.34 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 3.76 E-7                                                                                                                                                                                                                                                                                                                                                        | 1.61 B-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 1.95 E-5                   | 1.79 E-5                                                                                                                                                    | 122                                                                                                                                                                                                                  | 2.12 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 4.08 E-7                                                                                                                                                                                                                                                                                                                                                        | 1.93 B-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 2.17 E-5                   | 2.30 E-5                                                                                                                                                    | 212                                                                                                                                                                                                                  | 1.84 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 4.54 B-7                                                                                                                                                                                                                                                                                                                                                        | 2.47 E-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Constitution of                         | 2.38 E-5                   | 2.85 E-5                                                                                                                                                    | 302                                                                                                                                                                                                                  | 1.62 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 4.97 B-7                                                                                                                                                                                                                                                                                                                                                        | 3.07 E-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 2.57 E-5                   | 3.45 E-5                                                                                                                                                    | 392                                                                                                                                                                                                                  | 1.45 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 5.37 E-7                                                                                                                                                                                                                                                                                                                                                        | 3.71 E-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.675                                   | 2.75 E-5                   | 4.08 E-5                                                                                                                                                    | 482                                                                                                                                                                                                                  | 1.31 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 5.75 B-7                                                                                                                                                                                                                                                                                                                                                        | 4.39 E-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.616                                   | 2.93 E-5                   | 4.75 E-5                                                                                                                                                    | 572                                                                                                                                                                                                                  | 1.20 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 6.11 E-7                                                                                                                                                                                                                                                                                                                                                        | 5.12 E-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 3.25 E-5                   | 6.20 E-5                                                                                                                                                    | 752                                                                                                                                                                                                                  | 1.02 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 6.79 E-7                                                                                                                                                                                                                                                                                                                                                        | 6.67 E-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.457                                   | 3.55 E-5                   | 7.77 E-5                                                                                                                                                    | 932                                                                                                                                                                                                                  | 0.89 E-3                                                                                                                                                                                                                                                                                                                                                                                                           | 7.41 E-7                                                                                                                                                                                                                                                                                                                                                        | 8.37 E-4                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 0.616<br>0.525             | 1.29 1.71 E-5<br>1.20 1.80 E-5<br>1.09 1.95 E-5<br>0.946 2.17 E-5<br>0.835 2.38 E-5<br>0.746 2.57 E-5<br>0.675 2.75 E-5<br>0.616 2.93 E-5<br>0.525 3.25 E-5 | 1.29 1.71 E-5 1.33 E-5 1.20 1.80 E-5 1.50 E-5 1.09 1.95 E-5 1.79 E-5 0.946 2.17 E-5 2.30 E-5 0.835 2.38 E-5 2.85 E-5 0.746 2.57 E-5 3.45 E-5 0.675 2.75 E-5 4.08 E-5 0.616 2.93 E-5 4.75 E-5 0.525 3.25 E-5 6.20 E-5 | 1.29     1.71 E-5     1.33 E-5     32       1.20     1.80 E-5     1.50 E-5     68       1.09     1.95 E-5     1.79 E-5     122       0.946     2.17 E-5     2.30 E-5     212       0.835     2.38 E-5     2.85 E-5     302       0.746     2.57 E-5     3.45 E-5     392       0.675     2.75 E-5     4.08 E-5     482       0.616     2.93 E-5     4.75 E-5     572       0.525     3.25 E-5     6.20 E-5     752 | 1.29 1.71 E-5 1.33 E-5 32 2.51 E-3<br>1.20 1.80 E-5 1.50 E-5 68 2.34 E-3<br>1.09 1.95 E-5 1.79 E-5 122 2.12 E-3<br>0.946 2.17 E-5 2.30 E-5 212 1.84 E-3<br>0.835 2.38 E-5 2.85 E-5 302 1.62 E-3<br>0.746 2.57 E-5 3.45 E-5 392 1.45 E-3<br>0.675 2.75 E-5 4.08 E-5 482 1.31 E-3<br>0.616 2.93 E-5 4.75 E-5 572 1.20 E-3<br>0.525 3.25 E-5 6.20 E-5 752 1.02 E-3 | 1.29 1.71 E-5 1.33 E-5 32 2.51 E-3 3.58 E-7 1.20 1.80 E-5 1.50 E-5 68 2.34 E-3 3.76 E-7 1.09 1.95 E-5 1.79 E-5 122 2.12 E-3 4.08 E-7 0.946 2.17 E-5 2.30 E-5 212 1.84 E-3 4.54 E-7 0.835 2.38 E-5 2.85 E-5 302 1.62 E-3 4.97 E-7 0.746 2.57 E-5 3.45 E-5 392 1.45 E-3 5.37 E-7 0.675 2.75 E-5 4.08 E-5 482 1.31 E-3 5.75 E-7 0.616 2.93 E-5 4.75 E-5 572 1.20 E-3 6.11 E-7 0.525 3.25 E-5 6.20 E-5 752 1.02 E-3 6.79 E-7 |

Suggested curve fits for air:

$$\rho = \frac{p}{RT}$$
 $R_{\text{air}} \approx 287 \text{ J/(kg} \cdot \text{K)}$ 

Power law: 
$$\frac{\mu}{\mu_0} \approx \left(\frac{T}{T_0}\right)^{0.7}$$

Sutherland law: 
$$\frac{\mu}{\mu_0} \approx \left(\frac{T}{T_0}\right)^{3/2} \left(\frac{T_0 + S}{T + S}\right) \qquad S_{\text{air}} \approx 110.4 \text{ K}$$
with  $T_0 = 273 \text{ K}$ ,  $\mu_0 = 1.71 \text{ E-5 kg/(m \cdot s)}$ , and  $T$  in kelvins.