
Ain Shams Engineering Journal 12 (2021) 1985–1994
Contents lists available at ScienceDirect

Ain Shams Engineering Journal

journal homepage: www.sciencedirect .com
Electrical Engineering
A memory-based gravitational search algorithm for solving economic
dispatch problem in micro-grid
https://doi.org/10.1016/j.asej.2020.10.021
2090-4479/� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Universiti Kuala Lumpur, British Malaysian Institute
(UniKL BMI), Batu 8, Jalan Sungai Pusu, 53100 Gombak, Selangor, Malaysia.

E-mail addresses: zahraoui.younes@s.unikl.edu.my (Z. Younes), ibrahim.moha-
med@unikl.edu.my (I. Alhamrouni), saad@um.edu.my (S. Mekhilef), mohammed.
reyasudin@miu.edu.my (M. Reyasudin).

Peer review under responsibility of Ain Shams University.

Production and hosting by Elsevier
Zahraoui Younes a, Ibrahim Alhamrouni b,⇑, S. Mekhilef c, M. Reyasudin d

aUniversiti Kuala Lumpur, British Malaysian Institute (BMI), Gombak 53100, Malaysia
b Electrical Engineering Section, British Malaysian Institute University of Kuala Lumpur (BMI), Gombak 53100, Malaysia
cPower Electronics and Renewable Energy Research Laboratory, Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
dDepartment of Electrical and Electronic Engineering, Manipal International Universitty, Putra Nilai, 71800 Negeri Sembilan, Malaysia
a r t i c l e i n f o

Article history:
Received 26 May 2020
Revised 2 October 2020
Accepted 22 October 2020
Available online 18 February 2021

Keywords:
Micro-grid
Optimal economic load
Memory based Gravitational Search
Algorithm
a b s t r a c t

In recent years, the integration of renewable generation into micro-grid has been growing. Therefore, it is
essential to optimize the power generation from multiple sources with minimal cost. This paper presents
a Memory-Based Gravitational Search Algorithm (MBGSA) for solving the economic load dispatch in a
micro-grid. The problem with current metaheuristic optimization techniques and the conventional grav-
itational search algorithm (GSA) are largely associated with slow gathering rate, less memory to save the
best agent position of the optimal solution and poor performance in solving the complex optimization
problems. The MBGSA is based on the concept of saving the best solution of the agent from the last iter-
ation to calculate the new agent based on Newton’s laws of gravitation. In this work, the MBGSA has been
utilized to optimize power generation from multiple generation sources such as Photovoltaic (PV) sys-
tems, combined heat power (CHP) systems, and diesel generators. The results have been compared to
classic methods such as Quadratic Programming (QP) and other metaheuristics techniques such as the
GSA, Artificial Bee Colony (ABC), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The
results illustrate that the proposed method has higher performance in solving the optimal power gener-
ation problem compared to other methods.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Ain Shams University.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The reliance on micro-grids has been growing throughout the
years due to the increasing energy demand. Therefore, a micro-
grid that is capable to provide optimal and reliable energy is
required [1,2]. Currently, there are many problems related to
micro-grid systems such as energy management, scheduling and
generation optimization [3].

The optimal economic dispatch in the energy management sys-
tem (EMS) is among the critical and challenging problem that
needs to be addressed [4]. Economic dispatch aims to find the opti-
mal power shares from multiple generation sources while consid-
ering constraints such as minimum cost and generation limitation
[5,6]. There have been many methods been proposed for economic
dispatch optimization problems. Various classical optimization
techniques utilized such as QP has been employed to solve eco-
nomic dispatch optimization [7]. In [8], the author proposed the
Linear Programing (LP) to solve economic dispatch problems sub-
jected to environmental constraints. Meanwhile, economic dis-
patch has been solved by the lambda dispatch method, which
based on mathematical iteration in [9]. A mathematical method,
such as sequential quadratic programming (SQP), has been imple-
mented to solve the security-constrained economic dispatch [10].
Moreover, the non-linear programming (NLP) also been used to
determine the optimal economic dispatch in [11,12]. Additionally,
the mixed-integer linear programming (MILP) were utilized to set-
tle the bid and offer based on the economic dispatch problem in
[13]. MLIP proposed in [14] to optimize micro-grid operation while
minimizing the costs of the internal power supply from renewable
energy resources (REs) and the external energy from the primary
grid. The authors in [15,16] applied the stochastic dynamic
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programming to optimize the micro-grid and battery operating
cost, respectively, via solving the economic dispatch. These classi-
cal methods have drawbacks such as poor performance in solving
the optimization while using extensive computational resource.

Over the years, many researches were found utilizing meta-
heuristic optimization techniques to solve economic dispatch
problems having higher performance compared to the classical
methods. For example, the GA has been applied to solve the eco-
nomic dispatch problem in [17–19]. The author in [20] proposed
GA to minimize the total cost generation of 20 units of generator
system in an IEEE 30 bus system. Other metaheuristic optimization
techniques have been applied to solve economic dispatch problems
are PSO [21,22], Differential Evolution (DE) [23,24], and Ant Colony
Optimization (ACO) [25], The Jaya algorithm (JAYA) and GSA also
been proposed for economic dispatch optimization as in [26–28].
Although there was an improvement compared to previously
obtained results, the metaheuristic techniques suffer a critical
obstacle which are the less memory that is used for storing the best
solution for multiple iteration and setting the parameters properly.
This limits the performance and highly impact the quality of the
solution, particularly in the high dimensional number of the
problems.

Additionally, the hybridized optimization techniques are
another approach been used to determine the optimal economic
dispatch. The hybrid approach is robust and perform better to solve
a non-convex problem [28]. For instance, the multi-hybrid
approach utilizing PSO to solve the economic dispatch problem
was proposed in [28]. Furthermore, GA and Whale optimization
algorithm (WOA) utilized to solve the economic dispatch problem
considering the minimization of the fuel cost and emission dis-
patch problem in [29]. The author in [30] proposed combining
JAYA and Teaching–learning-based optimization (TLBO) algorithms
for the solution of economic dispatch. Moreover, other hybrid opti-
mization methods used are GA and bacterial foraging optimization
(BFO) as in [31], a modified genetic algorithm and a highly
improved version of particle swarm optimization (MGAIPSO) in
[32], and multi-combination of algorithm called ACO–ABC–HS as
in [33].

The shortcomings of the hybrid techniques are the search space,
where the algorithm may easily struggle to seek local minima or
shows misleading results in the case of premature convergence.

Considering the drawbacks mentioned from previously pro-
posed methods, a more robust method using MBGSA is proposed
in this study. The MBGSA were used to determine the optimal eco-
nomic dispatch in a micro-grid comprises of multiple generation
sources. Compared to the conventional GSA, MBGSA use of mem-
ory to boost the capability and efficiency of GSA. The micro-grid’s
model consist a two REs, three generators and CHP. The results
provided compared with the QP and metaheuristic optimization
techniques such as ABC, PSO, GA, GSA.

2. Problem formulation

Economic dispatch goal is to determine the optimum genera-
tion in a distributed energy resources (DERs) system while mini-
mizes the total power generation cost [34]. The EMS plays as the
central control unit in the micro-grid to select the operation mode
of all DERs units and loads. The economic dispatch system included
in the EMS, which is consisted of an optimization module, is illus-
trated in Fig. 1.

A quadratic equation was used to formulate the economic dis-
patch problem as [35]:

Ci Pið Þ ¼ aiP
2
i þ biPi þ ci ð1Þ
1986
where a; b; c are the cost coefficients of the i DER ($/kW) unit, C
is the generating cost ($) associated with each i DER, and P is the
power generated by DERs (kW) unit. The objective function of a
standard economic dispatch problem in the microgrid is to mini-
mize the total generating cost of DERs and is given by:

minOF ¼
Xn
i¼1

ðaiP
2
i þ biPi þ ciÞ ð2Þ

where OF is the objective function, and n represents the total DER in
the system.

As shown in Fig. 2, The EMS operates with the optimal share to
meet the power demand while the total power generated is
minimized.

Also, the objective function (2) is subjected to the constraints
given below:

(1) Power Balance

The total generated power of all DER units should be equal to
the power demand PLfrom the loads considering no losses of power
in transmission:

Xn
i¼1

Pi ¼ PL ð3Þ

The primary objective function is defined by:

minOF ¼
Xn
i¼1

aiP
2
i þ biPi þ ci

� �
� Pi �

Xn
i¼1

Pi � PL ð4Þ

(2) Generation limits

The power output of each DER unit operates within the lower
and upper limits. The inequality constraint is given by:

Pimin < Pi < Pimax ð5Þ
3. Gravitational search algorithm

The approach of the gravitational search was developed by
Rashedi et al. [36]. It considers the principles of mass interactions
and the law of gravity as fundamental.

This metaheuristic optimization technique generates a popula-
tion called agents, which are based on the stochastic search
method. The search agents in the GSA algorithm are represented
as a set of masses that can react with each other based on the New-
tonian gravity and the laws of motion. The position of the mass is
considered as the solution to the problem. All these masses attract
each other by the gravitational force, which can make a global
movement of the masses toward the best solution. The agent with
heavy mass corresponds to the best solution; consequently, its
moves are slower than the lighter ones, and its gravitational and
inertial masses are determined using a fitness function [37].

The algorithm Initially, defines the position of the i th agents
randomly with N dimension:

Xi ¼ x1i ; x
2
i ; x

3
i ; � � � � � � � � � :xni

� �
for i ¼ 1;2;3 � � � :;N: ð6Þ

where n is the number of the decision variable.
The number of iterations,t and the acceleration of the agent, i,

are calculated as below:

adi tð Þ ¼
X

j2Kbest;j–1

randjG tð Þ Mj tð Þ
Rij tð Þ þ e

xdj tð Þ � xdi tð Þ
� �

ð7Þ



Fig. 1. Economic dispatch scheme in the EMS for the microgrid system.

Fig. 2. EMS control model in the microgrid.
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where e is a constant, Kbest is a function that allows to control the
GSA performance and to avoid local optimum stagnation [38]. Mj tð Þ
is the mass of the j agent shown below:

Mi tð Þ ¼ miðtÞPN
j¼1mjðtÞ

ð8Þ

In which:

mi tð Þ ¼
fiti tð Þ�worstðtÞ
best tð Þ�worstðtÞ if bestðtÞ–worst

1otherwise

( )
ð9Þ

where fit tð Þ represent the fitness value of the agenti at t iteration.
Meanwhile, best tð Þ represent the minimum value in fit at t iteration.
worstðtÞ represent the maximum value in fit at t iteration.

Rij tð Þ is the Euclidean distance between the locations of Xi;Xj of
agents i andj respectively and given as:

Rij tð Þ ¼ kXiðtÞ;XjðtÞk2 ð10Þ
G tð Þ is calculated as below:

G tð Þ ¼ G0 � expð�b� t=tmaxÞ ð11Þ
where G tð Þ is gravitational constant, b is a constant gradient value, t
is the current iteration and tmax is the maximum number of itera-
tions. This following equation updates the new position and veloc-
ity of the agent as below:

xdi t þ 1ð Þ ¼ xdi tð Þ þ vd
i t þ 1ð Þ ð12Þ
1987
vd
i t þ 1ð Þ ¼ randi � vd

i tð Þ þ adi tð Þ ð13Þ
where rand is a uniform random variable in the interval between [0,
1]. The basic GSA flowchart is shown in Fig. 3. In GSA, the gravita-
tional force is a communication tool between the agents. Mean-
while, the gravitational constant G tð Þset the accuracy of the
search, that lower the number of iterations [39].

4. Memory based gravitational search algorithm (MBGSA) for
economic dispatch

The traditional GSA does not store the best agents in the opti-
mization iteration because of the position of agents related to the
previous iteration. Consequently, it does not ensure that new posi-
tions of the agent are best than the previous positions when
searching for the best solution. Hence, GSA may lose the optimal
solution from the previous iteration, and this downside limits the
performance of GSA in the complex optimization problems.

In MBGSA, the best position of any agent is stored as the agent’s
personal best position (pbest). Meanwhile, the new positions of
agents are calculated based on the best values to avoid loss of
the optimal search path and guarantee that the new agents are
Fig. 3. Flowchart of the basic GSA.



Fig. 4. Flowchart of the MBGSA.

Fig. 5. The proposed test system.

Fig. 6. The hourly sequential power demand.

Fig. 7. The solar irradiation forecasted for the next 24 h.
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turning towards the best solution [38], Therefore, the equations
represented as follows:

adi tð Þ ¼
X

j2Kbest;j–1

randjG tð Þ Mj tð Þ
Rij tð Þþe

pbestdj tð Þ � xdi tð Þ
� � ð14Þ

Rij tð Þ ¼ kXiðtÞ;pbestjðtÞk2 ð15Þ

mi tð Þ ¼
fiti tð Þ�worstpbest tð Þ

bestpbest tð Þ�worstpbest tð Þ ifbestðtÞ–worst

:

:

:

1otherwise

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð16Þ
1988
As shown in Eq. (14), the position of element j is adjusted
towards pbestj tð Þ, instead of the position of element j in the instant
XiðtÞ as in Eq. (7). On the other hand, the distance is measured from
the j best to the other agents’ positions as in Eq. (15), rather than
the current position i. The masses of the elements are calculated
based on the best performance of the agent from the first until
the iteration number t. The actual positions do not need to improve
when use the best positions of agents to find the new acceleration
for keeping the optimal path efficiently, which makes the agents
headed towards the optimal position in the optimization process
constantly. These adjustments make MBGSA more robust com-
pared to the conventional GSA. Fig. 4 illustrates the flowchart of
the proposed MBGSA in solving the economic dispatch problem.
5. Results

Day-ahead scheduling of the DERs in the micro-grid should be
taken into consideration to obtain the optimal result in generation
cost, and all power sources connected are required for reliable sup-
ply [40].

The DERs schedule can be estimated by using a forecast model
based on the datasets collected by meteorological station [41]. An
optimization strategy has been used to find the optimal economic
dispatch over a period of 24 h.

The proposed method has been tested on the IEEE 37 bus as in
[42], and the wind power system has been replaced by a diesel



Fig. 8. The temperature forecasted for the next 24 h.

Fig. 9. The power generation from the PV plants.

Table 1
Cost coefficients of the micro-grid DERs.

Plant c b a

DG1 62 105 0.009
DG2 75 175 0.01
DG3 37.4 160 0.008
PV1 4.45 29.3 0.0055
PV2 4.46 29.58 0.0055
CHP 5.21 75.73 0.0083

Fig. 10. Power generation vs power demand in the 1st case.

Fig. 11. Power generation vs power demand in the 2nd case.

Z. Younes, I. Alhamrouni, S. Mekhilef et al. Ain Shams Engineering Journal 12 (2021) 1985–1994
generator. The model of the proposed method is presented in Fig. 5.
Where the system comprises of three diesel generators, two PV
plants, and a CHP station. The hourly load demand is shown in
Fig. 6.
Table 2
MBGSA parameter settings.

Parameters Case 1

G0 Gravitational constant 100
b Gradient constant 20
e Zero offset constant 2.2204 � 10�16

Total cost ($) –

1989
The three diesel generators and the CHP have a capacity of
400 kW, 500 kW, 600 kW, 1000 kW, respectively. The PV genera-
tion output uses actual data taken from existing PV system in
Power Electronics and Renewable Energy Research Laboratory
(PEARL) at the University of Malaya, Malaysia. The PV generation
was forecasted based on machine learning techniques as described
in [43] to forecast the solar irradiation and temperature in the next
24 h. The solar radiation and temperature inputs are shown in
Fig. 7 and Fig. 8.

The power generation from the solar panel in the next 24 h is
presented in Fig. 9. Table 1 illustrates the cost coefficients of each
generator in the micro-grid.
Case 2 Case 3 Case 4

100 50 50
8 20 8
2.2204 � 10�16 2.2204 � 10�16 2.2204 � 10�16

3743936.92 – 3740268.35



Fig. 12. Power generation vs power demand in the 3rd case.

Fig. 13. Power generation vs power demand in the 4th case.

Fig. 14. The power generated by each optimization.

Fig. 15. Optimal power delivery by DERs using MBGSA.
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The performance of the proposed method was evaluated with
quadratic programming and other metaheuristic optimization
techniques. MATLAB SIMULINK 2019 was used for this work and
was run on an Intel (R) Core i5-8400 CPU, 2.8 GHz a lab computer
with 8 GB RAM under Windows 10.
Table 3
Parameters of each optimization technique.

Parameters Description MBGSA

N Size of Population 200
Vn Number of variable 6
it Iteration 1000
C1 Cognitive coefficient –
C2 Social coefficient –
r1 Random cognitive coefficient –
r2 Random social coefficient –
G0 Gravitational constant 50
b Gradient constant 8
e Zero offset constant 2.2204
Mut % Mutation probability –
Cro% Crossover probability –
A Predetermined number of trials for abandonment –
mr Modification rate –

1990
5.1. MBGSA parameters setting

The standard parameters of MBGSA such as the population size
and the number of iterations have been set to 50 and 100, respec-
GSA GA PSO ABC

200 200 200 200
6 6 6 6
1000 1000 1000 1000
– – 2 –
– – 1.5 –
– – Rand [0,1] –
– – Rand [0,1] –
50 – – –
8 – – –

� 10�16 2.2204 � 10�16 – – –
– 65 – –
– 10 – –
– – – 400
– – – 0.8



Fig. 16. Optimal power delivery by DERs using GSA.

Fig. 17. Optimal power delivery by DERs using GA.

Table 4
Technique Comparison of the results obtained from the MBGSA approach for the propose

Hour MBGSA GSA

1 138834.78 138834.8
2 119079.58 119079.6
3 112244.24 112244.2
4 108518.29 108518.3
5 108514.31 108514.3
6 118630.66 118630.7
7 144953.46 144953.5
8 167358.91 167358.9
9 152003.77 152003.8
10 111474.53 112758
11 100846.82 102537.2
12 83164.47 83164.47
13 85094.443 85148.99
14 118475.54 118510.4
15 88085.424 88984.64
16 93789.908 94402.96
17 98743.433 100090.3
18 187258.15 187706.2
19 251533.3 251789.3
20 294055.89 294055.9
21 294628.6 294628.6
22 284627.56 284627.6
23 257075.94 257314.2
24 209936.65 210603.5
Total Cost ($) 3728928.679 3736460.224
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tively. Table 2 below shows simulated results of four cases when
the parameters of the MBGSA (G0, b) are changed, and the total cost
of generation for 24 h in each case.

Figs. 10 and 12 represent the comparison of the power genera-
tion by DERs using the MBGSA through utilizing the 1st and the
2nd case parameter and the power demand at each for a period
of 24 h. It can be noted that the power generation unable to meet
the load demand several times. On the other hand, Figs. 11 and 13
shows the contrast the power generated by DERs and the power
requested for 24 h using the MBGSA while setting the parameters
in the 2nd and 4th case. The power generation from the DERs able
to meet the energy demand. Moreover, the total cost generating
using MBGSA for 24 h is $ 3,743,936.92 and $ 3,740,268.35 in the
2nd and 4th case, respectively. The parameters in the 3rd case
shows better results than the 4th case.

5.2. Comparison with metaheuristic Methods:

In this study, the MBGSA and GSA in the parameters that have
been utilized in the 4th case. The results are averaged over 100
runs and carried out to account for the variations in the result.
The best results are shown for each optimization method. The
other parameters are shown in Table 3. To expand the search space
and obtain satisfactory evaluations, the standard parameters such
as the initial population, the number of iterations were set to
200 and 1000, respectively.

Fig. 14 shows the power generation and the load demand opti-
mized by the MBGSA method. The power generated from the DERs
is able to meet the load demand. On the other hand, other opti-
mization techniques, such as the GSA, GA, PSO, and ABC, also meet
the energy demand successfully. Figs. 15–19 show the optimal
power delivered by DERs using MBGSA, GSA, GA, PSO, and ABC,
limited to generation constraints.

The performance evaluation between the methods is shown in
Table 4. The results illustrate that the cost obtained based on
MBGSA is the lowest compared to the other algorithms for every
hour. The proposed method is found to have the best optimization
performance compared to other methods in solving the optimal
dispatch problem by having the lowest total cost in 24 h.

Fig. 20 demonstrates the convergence ability between MBGSA
and other metaheuristic techniques used in hour 24. The conver-
d test system.

GA PSO ABC

140455.0809 139048.3 139023.2979
120075.2571 120279.9 119268.1034
114653.1408 114305.7 112432.7637
110376.2642 108854.7 108706.8134
110554.1167 109899.9 108702.8312
120514.2667 120286.9 118819.1788
147684.2749 145199.6 145141.9809
170017.6142 167559.5 167601.103
158733.887 152204.7 152192.2919
119862.5194 118400.4 111663.049
109900.8064 102972.9 101035.3387
93676.75558 87906.57 83352.99036
93175.65744 93591.17 85282.96275
127476.2338 122152.3 118664.0628
94657.01731 93525.8 88273.94383
101042.3914 97919.61 93978.42804
110481.7598 100680.1 98931.95327
192070.0477 187455.8 187446.6703
256172.6631 251721.8 251721.8206
296069.9403 294244.4 294244.4149
296383.2933 294817.1 294817.1233
285880 284816.1 284816.0806
257990 257264.5 257275.1967
212537.4748 210253.9 210125.1728
3840440.463 3775361.948 3733517.572



Fig. 18. Optimal power delivery by DERs using PSO.

Fig. 19. Optimal power delivery by DERs using ABC.

Fig. 21. The representation of (eq.2) in the test system at the hour 24.

Fig. 20. Convergence total cost generation of the algorithms proposed at hour 24.

Fig. 22. Optimal power delivery by DERs using QP.

Fig. 23. The value of the generation cost at each hour of the day obtained by QP.
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gence is shown in the expression of cost function value versus iter-
ations. It is apparent that the technique proposed has converged
faster with a smaller number of iterations. Moreover, the results
also indicate that the proposed method is able to obtain the best
results even with the absence of PV generations.

5.3. Comparison with quadratic programming

The same test system has been solved by using QP. Fig. 21
shows the representation of the quadratic equation Eq. (2).

Fig. 22 shows the optimal power delivered by DERs using QP,
and the constraints in each generator have been attained. Mean-
while, Fig. 23 illustrates the value of the generation cost at each
hour of the day obtained by PQ. The total cost generation is
3733453.159 $ in the 24 h. Based on these results, it’s clear that
the MBGSA obtained a lower cost than QP, with a value of
4,524.48 $.

6. Conclusion

This paper proposes an MBGSA approach for solving non-
convex economic dispatch problem considering DERs constraints.
The proposed optimization technique employs a memory storage
to keep the best solution of the previous iteration to enhance the
memory performance of the conventional GSA. The method has
been tested on an IEEE 32 bus system comprises of three diesel
generators, two PV plants, and a CHP station. The results have been
benchmarked against classical QP method and other metaheuris-
tics optimization techniques such as GSA, GA, PSO, and ABC. The
proposed method obtained lower generation cost for each hour
for the 24-hour period in solving the economic dispatch compared
to the other methods. Hence, the proposed MBGSA has higher per-
formance and robust in solving economic dispatch problems in a
micro-grid system.
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