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Abstract

This paper proposes an approach to accurately estimate the impedance value of a high

impedance fault (HIF) and the distance from its fault location for a distribution system.

Based on the three-phase voltage and current waveforms which are monitored through a

single measurement in the network, several features are extracted using discrete wavelet

transform (DWT). The extracted features are then fed into the optimized artificial neural net-

work (ANN) to estimate the HIF impedance and its distance. The particle swarm optimiza-

tion (PSO) technique is employed to optimize the parameters of the ANN to enhance the

performance of fault impedance and distance estimations. Based on the simulation results,

the proposed method records encouraging results compared to other methods of similar

complexity for both HIF impedance values and estimated distances.

Introduction

Underground distribution systems are widely implemented due to a higher level of security

against environmental hazards. However, identifying the HIF location in an underground sys-

tem is difficult due to the low fault current and non-visibility [1]. Therefore, a fast and accurate

HIF fault localization in an underground system is crucial to reduce the risk of damage prolif-

eration, outage time and accelerate the restoration process [2]. Estimating the impedance and

location of HIF is a challenging task due to the similarity of the operating current magnitude

under normal and faulty conditions. Thus, the low fault current is insufficient to trigger the

conventional overcurrent protection relay [3, 4]. Furthermore, it is reported that about 5% to

10% of all the fault events in the distribution system are caused by HIF. However, the actual

percentage could be higher since only HIF events ending in bolted faults are recorded [5].
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Various fault location methods have been proposed to identify the location of HIFs [6–8].

The literature concludes that the fault location error grows as the fault impedance value and

the distance to the fault point increase. Impedance-based methods have been used to locate

HIFs eventhough these methods are more suitable for locating low impedance faults (LIF).

Besides the impedance-based method, high frequency travelling wave, analytical formulation,

fundamental component-based, and knowledge-based methods have also been introduced to

tackle the HIF localization problem.

The high frequency travelling wave method is commonly used for the transmission line. In

a distribution system, this method is difficult to be implemented due to the complex topology

of the network. A distribution system with lateral branches will cause many refractions and

reflections from discontinuity points and at the lateral junctions [9]. To overcome this diffi-

culty, a new approach involving signal processing method and artificial intelligence (AI) meth-

ods are proposed in [10–16]. In these hybrid methods, the extracted features from the fault

generated travelling wave is fed into an AI technique to determine the fault location. Several

types of signal processing methods have been proposed to extract the features from the mea-

sured voltage and current signals. Wavelet transform (WT) is the most popular tool used in

this application as it provides both time and frequency information of the measured signal [17,

18]. On the other hand, empirical mode decomposition (EMD) has been proposed in [19] to

extract the transient signal. In [20], the discrete Fourier transform (DFT) is used instead of

WT and EMD for the same purpose. Similarly, several AI methods have also been proposed

such as artificial neural network (ANN) [21, 22], fuzzy logic system (FLS) [23, 24], support vec-

tor regression (SVR) [10, 25–27], core vector regression (CVR) [19] and adaptive neuro-fuzzy

inference system (ANFIS) [2, 20]. Some researchers have also utilized more than one AI

method as proposed in [23–25]. In [12], the relationship between the path characteristic fre-

quencies and fault location is investigated. Whereas in [14, 28], the frequency spectrum of the

voltage waveform is used to estimate the fault distance. Besides that, the analytical formulation

method has been utilized in [29–31] to estimate the fault distance. In [31], an estimation based

approach using equation derivation is formulated. Whereas in [29], the analytical formulation

method based on a forward calculation of zero sequence voltage and current has been pro-

posed. Other than that, the bus impedance matrix of the system is derived in [30] to estimate

the distance. All the mentioned techniques have their own strength and weakness in estimating

the fault distance accurately. It can be observed that some of them are only applicable to the

transmission system or LIF event. There are a few proposed techniques that require complex

computation to solve the problem. Regardless of all the weaknesses, all the proposed tech-

niques have contributed a significant finding to solve the fault distance estimation problem.

In this paper, the estimation of fault impedance and distance values due to the occurrence

of a single line to ground fault (SLGF) and balanced fault in the underground distribution sys-

tem is proposed. A single measurement of three-phase voltage and current waveforms are

measured at the main substation. The DWT is used to extract the features from the measured

voltage and current waveforms. Then, the correlation between the extracted features of voltage

and current waveforms is obtained using the cross-product analysis. Subsequently, the ANN is

utilized to estimate the fault impedance and distance values. A thorough investigation is car-

ried out to analyze the effect of different types of ANN learning algorithms as well as its ANN

parameters such as learning rate (lr), momentum constants (mc) and the number of neurons

in a hidden layer. The novelty of this paper is the implementation of the PSO technique to

determine the optimal values of these various ANN parameters in order to evaluate the value

of fault impedance and its distance. The determination of these optimal ANN parameters is

not considered before, which significantly improves the performance of ANN to obtain a

higher level of accuracy compared to conventional ANN.

Optimized artificial neural network to improve the accuracy of estimated fault impedances and distances
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Background

The proposed method detects the occurrence of HIF and estimates its impedance and distance

values using a combination of DWT, PSO and ANN. As such, a brief description of DWT,

PSO and ANN is explained as follows.

Discrete wavelet transforms

Discrete wavelet transforms (DWT) is a mathematical function that transforms the original

signal into time and frequency domain components. This unique ability of DWT to obtain

both time and frequency domain information overcomes the limitation of other signal pro-

cessing techniques such as Fourier Transform [18].

Fig 1 shows the basic operation of DWT, which consists of two complementary filters

which are high-pass and low-pass filters. Both filters decompose the original signal into high-

frequency and low-frequency components. The low-frequency component which is known as

approximation coefficients resembles the original signal. Whereas, the high-frequency compo-

nent which is also known as detail coefficients shows the fast variations in the signal. The high-

frequency component, yhigh and the low-frequency component, ylow for the original signal,

x(k) passes through the high-pass filter, h(2n-k) and low-pass filter, l(2n-k) with downsampling

by a value of two (2) are shown by the following equations:

yhighðnÞ ¼
X1

k¼� 1
xðkÞhð2n � kÞ ð1Þ

ylowðnÞ ¼
X1

k¼� 1
xðkÞlð2n � kÞ ð2Þ

Similarly, the following equation represents the complete convolution between the original

signals and the filters with downsampling.

yhigh ¼ ðx � hÞ # 2 ð3Þ

ylow ¼ ðx � lÞ # 2 ð4Þ

The main advantage of DWT is its capability to extract important features from the original

signal, which consists of discontinuities, irregularities and sharp spikes.

Particle swarm optimization

Particle swarm optimization (PSO) is one of the most common computational optimization

techniques used to search for an optimal solution [32, 33]. The basic concept of PSO is based

Fig 1. Discrete wavelet transform decomposition process.

https://doi.org/10.1371/journal.pone.0227494.g001
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on nature-inspired interacting agents such as fish school and birds flock towards a certain

food source. It is important to be noted that, there is no specific information related to the tar-

get location. As such, the process works randomly at the beginning and no specific assump-

tions are made [34]. The basic algorithm of PSO consists of a population called a swarm and

candidate solutions called particles. The particles will move around the search-space based on

certain mathematical formulation and their movements are guided by the best-known position

in the search-space. The best known position is updated when the particle discovers a better

position and the process is repeated until the optimal position is obtained.

The mathematical formulation to update the particle position is shown as follows:

velocity ¼ w � velocityþ r1 � c1 � ðp best � xiÞ þ r2 � c2 � ðg best � xiÞ ð5Þ

w ¼ vmax � ½ðvmax � vmin=max iteration� � q ð6Þ

xupdi ¼ xi þ velocity ð7Þ

where

q = 1: max_iteration

r1 and r2 = rand(max_iteration)

c1 = c2 = 0.7

vmax = 0.9

vmin = 0.4

pbest = best position for each particle

gbest = global best position among all p_best
xi = current position for each particle

xupdi ¼ update position for each particle
The position of each particle will be observed for each iteration. If the particle comes closer

to the target, the old particle (previous particle) will be replaced by a new particle (updated par-

ticle). Otherwise, the particle will remain the same.

Artificial neural network

Artificial neural network (ANN) is an intelligent technique used for estimation, classification,

prediction or forecasting. ANN is inspired based on the neural structure of the brain, which

consists of millions of cells. Each of these cells is interconnected to each other and provides the

ability for the brain to analyze, remember and think. In this concept, the cells are introduced

as neurons, which requires an existing or pre-defined set of inputs. Each of these inputs is

trained and weighted inside the neurons to be matched with the desired target [35].

Fig 2 shows a typical diagram of ANN architecture which consists of three layers known as

the input layer, hidden layer and output layer. The activation function used in the hidden and

output layers is hyperbolic tangent sigmoid transfer function (tansig) and linear transfer func-

tion (purelin) respectively. During the training process, the input data (in the input layer) will

be trained and weighted by the neurons in the hidden layer. Then, the estimated output from

the training process will be compared with the desired target (in the output layer). The com-

parison is further evaluated based on the minimum root mean square (rms) error. The training

process is repeated by adjusting the weights and bias inside the neurons until the estimated

output and the desired target is matched with minimum rms error. The main advantage of

ANN is the ability to implicitly learn and model the complex relationships between inputs and

outputs.

Optimized artificial neural network to improve the accuracy of estimated fault impedances and distances
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Methodology

In this paper, a hybrid approach that incorporates DWT, ANN and PSO techniques to accu-

rately estimate the value of HIF and its distance are proposed. First, DWT is utilized to extract

the detail and approximation coefficients from the three-phase voltage and current waveforms.

It is noted that during the occurrence of HIF in the distribution network, the measured voltage

and current waveforms have fluctuated. Further investigation shows that the fluctuation values

vary with respect to the fault impedance value and the distance. As such, in this research, the

fluctuated voltage and current waveforms are used as the input data to estimate the fault

impedance value and its distance. The relationship between the extracted features of voltage

and current waveforms is obtained by utilizing the cross-product analysis. Subsequently, the

cross-product data are fed into the ANN to estimate the fault impedance and distance values.

In this proposed method, the PSO technique is implemented to determine the optimal values

of ANN parameters comprising the number of neurons, learning rate (lr) and momentum

constant (mc).

Feature extraction by DWT

DWT is applied to extract important features from the measured three-phase voltage and cur-

rent waveforms during the HIF event. The sampling rate of the waveforms is 4kHz (80 samples

per one full cycle). The Daubechies fourth order (Db4) mother wavelet is selected to extract

the features. Fig 3(A) shows an example of the measured phase-A voltage waveform when

SLGF with fault impedance value of 50Ω is applied. The anomaly in the waveform during the

HIF event is difficult to be detected by general observation. Due to this, the measured wave-

form is decomposed using the Db4 to detect the anomaly. The extracted features consisting of

approximation and detail coefficients are shown in Fig 3(B) and 3(C) respectively. In Fig 3(C),

the sharp peak indicates the starting point of an anomaly in the waveform.

Fig 4(A) and 4(B) show an enlarged figure extracted from Fig 3(B) and 3(C) respectively.

As shown in Fig 4(B), there is a sharp peak fluctuation in detail coefficients which can be

Fig 2. Basic artificial neural network architecture.

https://doi.org/10.1371/journal.pone.0227494.g002
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observed when the HIF event occurs in the system. Significantly, the magnitude of the peak

fluctuation varies as the fault location and impedance values vary. Thus, the variation in peak

magnitude is selected as the first cue to estimate the fault location and impedance value. The

first feature is the ratio of the difference between two adjacent detail coefficients (RODC),

starting at the point of an anomaly as shown in Eq (8).

At the same time, a small fluctuation can be observed in the approximation coefficient as

indicated by the circle in Fig 4(A). It is noted that the approximation coefficients magnitude

reduces slightly after a HIF event. As such, the dip is selected as the second cue as its magni-

tude also changes based on the fault impedance value and location. The second feature is in

the form of energy of the approximation coefficients (EAC). The energy is calculated over 80

samples of the approximation coefficients and it begins from the start of the anomaly marked

by the sharp peak of the detail coefficients as shown in Eq (9). The summation of squared of

80 approximation coefficients samples (equal to one full cycle) is considered as one energy

value.

Fig 3. Extracted coefficients using Db4 mother wavelet. (A) Original voltage waveform. (B) Approximation

coefficients. (C) Detail coefficients.

https://doi.org/10.1371/journal.pone.0227494.g003
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The RODC and EAC are calculated as follows:

RODC ¼
cDV;Iða;b;cÞ

ðiþ 1Þ � cDV;Iða;b;cÞ
ðiÞ

cDV;Iða;b;cÞ
ðiÞ

�
�
�
�
�

�
�
�
�
�

ð8Þ

EAC ¼
X80

i¼1
cA2

V;Iða;b;cÞ
ðiÞ ð9Þ

where

cDV;Iða;b;cÞ
ðiþ 1Þ ¼ f irst peak of detail coefficients of voltage and current for each phase

cDV;Iða;b;cÞ
ðiÞ ¼ starting of the first peak of detail coefficients of voltage and current for

each phase
cAV;Iða;b;cÞ ðiÞ ¼ approximation coefficients of voltage and current for each phase
As such, there will be 12 data comprising of RODC and EAC for 3 phases of voltage and

current waveforms. However, the relationship between the voltage and current is obtained

through the cross-product analysis to reduce the number of data into 6. Utilizing a lower num-

ber of input data can reduce the ANN training time. The cross-product analysis is explained

briefly in the next subsection.

Cross-product analysis

Generally, the cross-product analysis which also known as vector product analysis is a binary

operation that involves two vectors in three-dimensional space, normally denoted by symbol

‘x’. The resultant of cross product operation between two independent vectors is another vec-

tor that is perpendicular, known as a normal vector. In this paper, the two independent vectors

are represented by voltage, V and current, I signals, whereas, the three phases (phase A, B and

Fig 4. Enlarged extracted features. (A) Enlarged approximation coefficients. (B) Enlarged detail coefficients.

https://doi.org/10.1371/journal.pone.0227494.g004
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C) of the signal represents three-dimensional space (̂i; ĵ; k̂).

V ¼ Vâi þ Vb̂j þ Vck̂

I ¼ Iâi þ Ib̂j þ Ick̂

V � I ¼ ðVâi þ Vb̂j þ Vck̂Þ � ðIâi þ Ib̂j þ Ick̂Þ ð10Þ

It can also be expressed in matrix notation.

V � I ¼
î ĵ k̂

Va Vb Vc
Ia Ib Ic

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

V � I ¼
Vb Vc
Ib Ic

�
�
�
�
�

�
�
�
�
�
î þ

Vc Va
Ic Ia

�
�
�
�
�

�
�
�
�
�
ĵ þ

Va Vb
Ia Ib

�
�
�
�
�

�
�
�
�
�
k̂ ð11Þ

It is observed that during the fault, both voltage and current signals are effected. Both sig-

nals have significant information related to the fault that can assist in determining the fault

type, fault impedance and distance values. As such, the correlation between the voltage and

current signals is obtained through the cross-product operation. It is crucial for this operation

in order to reduce the number of data (RODC and EAC) without losing any significant infor-

mation related to the fault as mentioned previously. Thus, a total of 6 data consisting of corre-

lated RODC and EAC are obtained and utilized instead of 12 data. Indirectly, this can reduce

ANN training time by half.

ANN variables selection

The effectiveness of ANN is influenced by algorithm and ANN parameters such as momentum

constant, learning rate and the number of neurons in hidden layers. The momentum constant,

mc is responsible to ensure that the system is not trapped in local minima. It assists in training

process acceleration by increasing the convergence speed of the system. The value ofmc can be

set in between 0 to 1 depending on the number and complexity of the data. If the value ofmc is

set too high, it will risk minima overshooting, thus making the system unstable. However, if

themc value is set too low, the training process will become slower.

The learning rate, lr is the parameter responsible to control the size of weight and bias dur-

ing the training process until the estimated output matches the desired target. The proper

value of lr can assist in accelerating the convergence of the training process. The value of lr can

be varied between 0 to 1. If the value of lr is set too low, it will slow down the network learning

speed. If lr is set too high, it will cause the weight, bias and the objective function to diverge.

The value of lr can be adjusted based on the sum squared error (SSE) over several consequent

epochs. If the value of SSE is alternating within several consequent epochs, then the value of lr
should be decreased to slowly control the size of weight and bias. Otherwise, the value of lr can

be increased to expedite the convergence of the training process.

The third ANN parameter which influences the ANN performance is the number of neu-

rons in the hidden layer. It is noted that there is no limit on the number of neurons that can be

used. However, if too many neurons are used in the hidden layer, it will increase the ANN

training time. Besides that, it can lead to an over-fitting problem which affects the ability of

ANN to generalize. Consequently, it will affect the accuracy of ANN to predict the actual
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output for new test data. On the other hand, if a small number of neurons is applied, it can

also lead to an accuracy problem in which the system is insufficient to learn and match the

input data with respect to the output data. Generally, the number of neurons is selected

between the number of input data and output data. It can also be determined through trial and

error approach with respect to the minimum root mean square (rms) error. Unfortunately,

this approach is a time-consuming method.

There are different types of ANN learning algorithms such as Levenberg-Marquardt back-

propagation, Bayesian regularization and others as mentioned in Table 1 [36]. Each of the

learning algorithms has its own strength for a specific purpose such as pattern recognition or

function approximation depending on the complexity of the problem.

Determination of optimal value of ANN parameters through PSO

Fig 5 shows the flowchart of the proposed algorithm of ANN incorporating the PSO technique

to determine the optimal value of ANN parameters. The proposed algorithm is initialized by

generating a random number of three particles, x and these particles are assigned to three

ANN parameters, which are lr,mc and number of neurons. The combination of these three

particles is evaluated based on the objective function, ObjFunc as calculated using Eq (12).

Through this ObjFunc, the local best particles, p_best and p_position, which are the ANN

parameters and its ObjFunc respectively are determined. Among all the p_best, the global best

particles, g_best and its respective g_position are determined and stored. The g_best is selected

among all the p_best that gives the optimal value of ObjFunc.
The process is iterated by updating the value of the particle based on the mathematical for-

mula given in Eq (7). The updated objective function, ObjFuncupd, is re-evaluated. In this step,

the ObjFuncupd will be compared against the previous ObjFunc. The p_best and p_position will

be updated if the ObjFuncupd is better compared to the previous ObjFunc. Otherwise, p_best
and p_position will remain the same. Simultaneously, the g_best and g_position will be updated

according to the new set of updated p_best and p_position. The process is iterated until the

optimal solution is obtained or the maximum number of iterations is reached. In this study,

the maximum number of iterations is set equal to 100.

The pseudocode for the proposed algorithm is given as follows:

ANN Optimization

1. Obtain random particles from PSO, x

2. Assign the particles to

a. learning rate, lr

b. momentum rate,mr

c. number of neurons

3. Load the training data and train the ANN.

4. Obtain the objective function, ObjFunc

ObjFunc ¼
aver err faultdist þ aver err faultimped

2
ð12Þ

where

err faultdist ¼ absðactfaultdist � estfaultdist Þ
err faultimped ¼ absðactfaultimped � estfaultimpedÞ
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5. Update particles value, xupd

6. Update objective function, ObjFuncupd

7. Obtain the optimal solutions

Performance of proposed method

In this section, the performance of the proposed method is investigated with two different test

systems. The first and second test system consists of 18-bus and 33-bus respectively. The opti-

mization process is carried out using MATLAB software version 8.6 and the neural network is

simulated using Matlab Neural Network Toolbox™. In the first test system, the significance of

Fig 5. Flowchart of ANN optimization algorithm.

https://doi.org/10.1371/journal.pone.0227494.g005
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utilizing the optimization technique is evaluated. The performance between the standard ANN

and PSO-optimized ANN is observed. The effect of different types of ANN learning algorithm

with the application of PSO is also investigated. Subsequently, further investigation is con-

ducted in the second test system to show the robustness of the proposed method implemented

in a bigger network.

18-Bus test system

Fig 6 shows a simplified 132/11kV distribution network consisting of 18 buses. The network

consists of 17 line sections and it is developed using the PSCAD/EMTDC software. The fre-

quency of the system is 50Hz and the sampling frequency is 4kHz (80samples per one full

cycle). Three-phase voltage and current waveforms are measured using the measurement

device that can eliminate any noise. As such, in this paper, the effect of noise is not considered

as it is already filtered out during the measurement process. In this investigation, different

fault impedance values are applied at each node. There is a total of 187 cases consisting of 11

fault impedance values (from 50Ω to 150Ω in steps of 10Ω) and 17 nodes.

Analysis of the proposed method. In this study, a comparison is made between the stan-

dard ANN with PSO-optimized ANN to estimate the fault impedance and distance values. In

the standard ANN, default values for lr andmc set by ANN are utilized and the number of neu-

rons is set equal to the number of input data. In the PSO-optimized ANN, the optimal values

for each ANN parameters are first determined using PSO. In both case studies, the Levenberg-

Marquardt backpropagation is selected as the learning algorithm. Besides that, the same train-

ing set is used for both cases for a fair comparison. In this study, the performance for the stan-

dard ANN and PSO-optimized ANN is evaluated based on the average percentage of error as

Fig 6. Simplified distribution network.

https://doi.org/10.1371/journal.pone.0227494.g006
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shown below:

Percentage of Error; PoE ¼
jestimated � actualj

actual
� 100% ð13Þ

Average Percentage of Error;APoE ¼
Pn

i¼1
PoEi
n

ð14Þ

where n is the number of data.

Fig 7 shows the comparison between the standard ANN and PSO-optimized ANN results

for fault impedance estimation. Based on the results, it can be observed that the APoE for the

PSO-optimized ANN is lower compared to the standard ANN for all cases of fault impedance

values. Besides that, the APoE for PSO-optimized ANN reduces as the fault impedance value

increases.

Fig 8 shows the comparison in terms of fault distance estimation between standard ANN

and PSO-optimized ANN. It can be observed that the PSO-optimized ANN delivers lower

APoE compared to standard ANN. In general, the fault distance can be estimated accurately

using PSO-optimized ANN at each node since APoE value is minimal (less than 2%).

The results show that the PSO-optimized ANN delivers better performance compared

to standard ANN in estimating the fault impedance and distance values as depicted in Figs 7

and 8 respectively. Thus, it demonstrates the necessity of using the optimization technique to

determine the optimal values of ANN parameters.

Different types of learning algorithm. In the previous subsection, the significance of

utilizing PSO-ANN has been analyzed. In this section, the effect of different types of ANN

learning algorithms such as Levenberg-Marquardt backpropagation (trainlm), Bayesian regu-

larization (trainbr) and others [36], are investigated as shown in Table 1. In this investigation,

the HIF is applied at each node with different fault impedance values. The fault impedance

and distance values are estimated by the PSO-optimized ANN utilizing different types of ANN

Fig 7. Fault impedance estimation result between standard ANN and PSO-optimized ANN.

https://doi.org/10.1371/journal.pone.0227494.g007
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learning algorithm. The performance for each learning algorithm is evaluated based on Obj-
Func (Eq 12) and the results are shown in Table 1. The second to fourth column indicates the

optimal values for ANN parameters tuned by PSO.

As shown in Table 1, trainbr and trainlm delivers the lowest value of ObjFunc with 0.0394

and 0.0174 respectively. However, further analysis is required to evaluate the consistency

between trainbr and trainlm before the best learning algorithm is selected.

Analysis between trainbr versus trainlm. It is observed that trainbr and trainlm deliver

better performance compared to the other learning algorithms. However, further investigation

is required to evaluate the robustness of these two learning algorithms. The same case study as

in the previous analysis is repeated 10 times for each learning algorithm to check the proposed

technique’s consistency. Table 2 shows the results for both trainbr and trainlm.

Fig 9 shows the comparison between trainbr and trainlm in terms of ObjFunc. It can be

observed that the results from both learning algorithms are consistent. However, trainlm is

selected as the best learning algorithm as it provides the lowest value of ObjFunc.
Evaluation of the proposed method. To verify the effectiveness of the proposed method,

more test cases are investigated in which the fault is applied in the middle of each line section

with different fault impedance values. It must be noted that these test cases are unknown sam-

ples that are not trained by ANN. In this analysis, the performance of trained ANN to estimate

the fault impedance and distance values for unknown samples are investigated. There are 170

test cases comprising of 10 different fault impedance values (55–145Ω in increment order of

10Ω) being applied in the middle of each line sections. However, only 10 out of the 170 test

cases deliver poor results and these results are shown in Tables 3 and 4. It can be observed that

the maximum error for fault impedance estimation is 0.333Ω as shown in Table 3. Whereas

for fault distance estimation, the maximum error is 0.063km as shown in Table 4. Based on

the test results, the average error of fault distance and impedance are 0.0082km and 0.0310Ω
respectively. As such, the ObjFunc for the testing dataset is equal to 0.0196. It verifies that the

proposed method can estimate the fault impedance and distance values accurately.

Fig 8. Fault distance estimation result between standard ANN and ANN-PSO.

https://doi.org/10.1371/journal.pone.0227494.g008
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Table 1. ObjFunc based on different type of learning algorithm.

Learning algorithm [36] lr mc no. of neuron ObjFunc
trainbfg 0.414 0.6648 9 0.1261

trainbr 0.0065 0.6041 15 0.0394

traincgb 0.4214 0.9263 18 0.5293

traincgf 0.5272 0.4695 17 0.5041

traincgp 0.1508 0.5901 4 0.5262

trainlm 0.4706 0.2387 24 0.0174

trainoss 0.2155 0.4998 9 0.5857

trainr 0.6236 0.7638 2 0.6274

trainrp 0.7356 0.6722 14 0.5351

trainscg 0.7724 0.1303 13 0.5661

https://doi.org/10.1371/journal.pone.0227494.t001

Table 2. Robustness of trainbr and trainlm algorithms.

trainbr trainlm
lr mc no. of neuron ObjFunc lr mc no. of neuron ObjFunc

0.0065 0.6041 15 0.0394 0.4706 0.2387 24 0.0174

0.1751 0.6973 17 0.0349 0.8064 0.5244 26 0.0156

0.812 0.3097 13 0.0374 0.5781 0.2769 24 0.0193

0.2381 0.9828 17 0.0364 0.2459 0.88 30 0.0184

0.6347 0.6566 9 0.0374 0.0078 0.8677 30 0.0166

0.323 0.5788 14 0.0355 0.6615 0.571 26 0.0187

0.6811 0.5246 22 0.0385 0.452 0 22 0.0215

0.3321 0.993 22 0.0360 0.0984 0.7597 25 0.0208

0.9513 0.8658 30 0.0390 0.5491 0.8387 25 0.0196

0.4575 0.4261 19 0.0380 0.0565 0.6745 22 0.0148

https://doi.org/10.1371/journal.pone.0227494.t002

Fig 9. Consistency and competency between trinlm and trainbr.

https://doi.org/10.1371/journal.pone.0227494.g009
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33-Bus test system

In this section, the effectiveness of the proposed method is further evaluated for a larger sys-

tem. Fig 10 shows a larger distribution network consisting of 33 buses. Here, 2 types of fault

which are SLGF and balanced fault are investigated. These types of fault are considered since

the SLGF is the most common type of fault and the balanced fault is the most severe type of

fault which occurs in the distribution network [37]. SLGF is comprised of AGF, BGF and

CGF, whereas for balanced fault, it comprises ABCGF and ABCF.

Results

In this analysis, the effectiveness of the proposed method in a larger distribution network with

different types of fault is evaluated. Each type of fault consists of 363 cases comprising of 11

fault impedance values (50–150Ω in increment order of 10Ω) being applied at 33 nodes. How-

ever, only the first 5 cases out of the 363 cases with the maximum value of absolute error are

provided. Tables 5 to 10 shows the results for fault distance estimation whereas Tables 11 to 15

show the results for fault impedance estimation.

Table 5 shows the result for the fault distance estimation when the AGF type of fault is

applied. As shown in the table, it can be observed that the maximum absolute error is

0.060km. However, the estimated fault distance is in a negative value. Since the distance cannot

be in a negative value, therefore the negative estimated fault distance is changed to a zero value

as shown in Table 6. As such, the new maximum absolute error becomes 0.056km.

Table 4. Fault distance estimation using PSO-optimized ANN (18-bus).

Estimated Fault Distance (km) Actual Fault Distance (km) Absolute Error (km)

0.313 0.25 0.063

0.307 0.25 0.057

0.201 0.25 0.049

0.298 0.25 0.048

1.081 1.125 0.044

1.084 1.125 0.041

0.290 0.25 0.040

1.090 1.125 0.035

1.094 1.125 0.031

https://doi.org/10.1371/journal.pone.0227494.t004

Table 3. Fault impedance estimation using PSO-optimized ANN (18-bus).

Estimated Fault Impedance (Ω) Actual Fault Impedance (Ω) Absolute Error (Ω)

125.333 125 0.333

145.330 145 0.330

135.307 135 0.307

115.225 115 0.225

134.838 135 0.162

124.853 125 0.147

114.862 115 0.138

144.870 145 0.130

105.107 105 0.170

https://doi.org/10.1371/journal.pone.0227494.t003
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Tables 7 to 10 show the fault distance estimation results for BGF, CGF, ABCGF and ABCF

type of fault respectively. As shown in the tables, it can be observed that all the fault distance

values can be estimated accurately with an error of less than 300m.

Tables 11 to 15 shows the estimated fault impedance results for different types of fault. It

can be observed that the proposed method had successfully estimated the fault impedance

with the maximum error of 0.24Ω, recorded during the occurrence of CGF type of fault.

Fig 10. Distribution network consists of 33 buses.

https://doi.org/10.1371/journal.pone.0227494.g010
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Table 5. Fault distance estimation (AGF).

Estimated fault distance (km) Actual fault distance (km) Absolute error (km)

-0.060 0.000 0.060

-0.059 0.000 0.059

4.001 3.945 0.056

-0.056 0.000 0.056

4.093 4.040 0.053

https://doi.org/10.1371/journal.pone.0227494.t005

Table 8. Fault distance estimation (CGF).

Estimated fault distance (km) Actual fault distance (km) Absolute error (km)

4.434 4.290 0.144

4.000 4.110 0.110

3.981 4.085 0.104

3.611 3.690 0.079

3.102 3.040 0.062

https://doi.org/10.1371/journal.pone.0227494.t008

Table 6. Corrected fault distance estimation (AGF).

Estimated fault distance (km) Actual fault distance (km) Absolute error (km)

0.000 0.000 0.000

0.000 0.000 0.000

4.001 3.945 0.056

0.000 0.000 0.000

4.093 4.040 0.053

https://doi.org/10.1371/journal.pone.0227494.t006

Table 7. Fault distance estimation (BGF).

Estimated fault distance (km) Actual fault distance (km) Absolute error (km)

1.864 1.750 0.114

1.854 1.750 0.104

1.846 1.750 0.096

1.984 1.890 0.094

1.839 1.750 0.089

https://doi.org/10.1371/journal.pone.0227494.t007

Table 9. Fault distance estimation (ABCGF).

Estimated fault distance (km) Actual fault distance (km) Absolute error (km)

4.241 3.945 0.296

4.238 3.945 0.293

4.575 4.290 0.285

4.568 4.290 0.278

4.307 4.040 0.267

https://doi.org/10.1371/journal.pone.0227494.t009
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Table 11. Fault impedance estimation (AGF).

Estimated fault impedance (Ω) Actual fault impedance (Ω) Absolute error (Ω)

149.78 150 0.22

110.17 110 0.17

130.16 130 0.16

120.16 120 0.16

139.84 140 0.16

https://doi.org/10.1371/journal.pone.0227494.t011

Table 10. Fault distance estimation (ABCF).

Estimated fault distance (km) Actual fault distance (km) Absolute error (km)

4.071 3.945 0.126

4.070 3.945 0.125

4.158 4.040 0.118

4.407 4.290 0.117

4.155 4.040 0.115

https://doi.org/10.1371/journal.pone.0227494.t010

Table 14. Fault impedance estimation (ABCGF).

Estimated fault impedance (Ω) Actual fault impedance (Ω) Absolute error (Ω)

129.82 130 0.18

129.83 130 0.17

139.84 140 0.16

130.16 130 0.16

129.85 130 0.15

https://doi.org/10.1371/journal.pone.0227494.t014

Table 13. Fault impedance estimation (CGF).

Estimated fault impedance (Ω) Actual fault impedance (Ω) Absolute error (Ω)

140.24 140 0.24

150.22 150 0.22

140.21 140 0.21

110.20 110 0.20

130.20 130 0.20

https://doi.org/10.1371/journal.pone.0227494.t013

Table 12. Fault impedance estimation (BGF).

Estimated fault impedance (Ω) Actual fault impedance (Ω) Absolute error (Ω)

140.21 140 0.21

150.20 150 0.20

149.81 150 0.19

130.19 130 0.19

140.17 140 0.17

https://doi.org/10.1371/journal.pone.0227494.t012
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Comparison with existing methods

To justify the effectiveness of the proposed method, a comparison between the proposed

method with the existing methods is conducted as shown in Table 16. The comparison is

based on the maximum error of fault distance in kilometres. It is important to note that the

maximum error of fault distance mentioned in Table 16 is obtained directly from the respec-

tive literature using their proposed network and technique. It can also be observed that the

proposed PSO-optimized ANN delivers results with higher accuracies where the maximum

error is only 0.063km for a small network whereas for a larger network, the maximum error is

0.144km and 0.296km for SLGF and balanced types of fault respectively.

Conclusion

In this paper, the estimation of fault impedance values and distance based on PSO-optimized

ANN is proposed. In this proposed method, important features were first extracted from the

three-phase voltage and current waveforms using the DWT. The cross-product analysis is sub-

sequently used to obtain the correlation between the voltage and current waveforms before

being fed into the ANN. In this analysis, PSO was used to determine the optimal values of

ANN parameters comprising of the learning rate, momentum constant and the number of

neurons in a hidden layer. Performance comparison between standard ANN and PSO-opti-

mized ANN in terms of ObjFunc was conducted to demonstrate the importance of utilizing

the optimization technique. Furthermore, different types of ANN learning algorithms were

applied to investigate their impact on the accuracy of the proposed method. Two different net-

works were considered to evaluate the robustness of the proposed method. Based on the simu-

lation results, it is observed that the fault impedance and distance values can be estimated to

high accuracies using PSO-optimized ANN. The maximum error is only 0.063km for a small

network whereas for a larger network, the maximum error is 0.144km and 0.296km for SLGF

Table 15. Fault impedance estimation (ABCF).

Estimated fault impedance (Ω) Actual fault impedance (Ω) Absolute error (Ω)

140.20 140 0.20

140.16 140 0.16

119.85 120 0.15

130.15 130 0.15

140.15 140 0.15

https://doi.org/10.1371/journal.pone.0227494.t015

Table 16. Comparing the proposed method to existed methods.

Technique proposed in other presented papers Maximum error of fault distance (in km)

Wavelet, SVR [9] 0.214

Wavelet, ANN, FLS [10] 0.248

EMD, CVR [12] 0.393

Unsynchronized phasor [17] 0.095 (small network)

0.557 (large network)

Proposed method 0.063 (small network)

0.144 (large network)–SLGF

0.296 (large network)—balanced

https://doi.org/10.1371/journal.pone.0227494.t016
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and balanced types of fault respectively. Besides that, trainlm is observed to be the best ANN

learning algorithm as it delivers the lowest value of ObjFunc.
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