On the Solutions of the Equation $x^{3}+A x=B$ in $Z_{3}{ }^{*}$ with Coefficients from Q_{3}

I. M. Rikhsiboev1, A. Kh. Khudoyberdiyev2, T. K. Kurbanbaev2, K. K. Masutova2

Abstract

Recall that in [1] it is obtained the criteria solvability of the Equation $x^{3}+a x=b$ in $\mathbb{Z}_{p}^{*}, \mathbb{Z}_{p}$ and \mathbb{Q}_{p} for $P>3$. Since any p-adic number x has a unique form $x=p^{k} x^{*}$, where $\boldsymbol{x}^{*} \in \mathbb{Z}_{p}^{*}$ and $k \in \mathbb{Z}$, ${ }_{\text {in [1] }}$ it is also shown that from the criteria in $\mathbb{Z}_{p_{\text {it }}}^{*}$ follows the criteria in \mathbb{Z}_{p} and \mathbb{Q}_{p}. In this paper we provide the algorithm of finding the solutions of the Equation $x^{3}+a x=b$ in \mathbb{Q}_{3} with coefficients from \mathbb{Q}_{3}.

KEYWORDS : p-Adic Numbers; Solvability of Equation; Congruence

