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Abstract: Behavioural assessment of experimental pain is an essential method for 

analysing and measuring pain levels. Rodent models, which are widely used in behavioural 

tests, are often subject to external forces and stressful manipulations that cause variability 

of the parameters measured during the experiment. Therefore, these parameters may be 

inappropriate as indicators of pain. In this article, a stepping-force analgesimeter was 

designed to investigate the variations in the stepping force of rats in response to pain 

induction. The proposed apparatus incorporates new features, namely an infrared  

charge-coupled device (CCD) camera and a data acquisition system. The camera was able 

to capture the locomotion of the rats and synchronise the stepping force concurrently so 
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that each step could be identified. Inter-day and intra-day precision and accuracy of each 

channel (there were a total of eight channels in the analgesimeter and each channel was 

connected to one load cell and one amplifier) were studied using different standard load 

weights. The validation studies for each channel also showed convincing results whereby 

intra-day and inter-day precision were less than 1% and accuracy was 99.36–100.36%. 

Consequently, an in vivo test was carried out using 16 rats (eight females and eight males). 

The rats were allowed to randomly walk across the sensor tunnel (the area that contained 

eight channels) and the stepping force and locomotion were recorded. A non-expert, but 

from a related research domain, was asked to differentiate the peaks of the front and hind 

paw, respectively. The results showed that of the total movement generated by the  

rats, 50.27 ± 3.90% in the case of the male rats and 62.20 ± 6.12% in that of the female rats 

had more than two peaks, a finding which does not substantiate the assumptions made in 

previous studies. This study also showed that there was a need to use the video display 

frame to distinguish between the front and hind paws in the case of 48.80 ± 4.01% of the 

male rats and 66.76 ± 5.35% of the female rats. Evidently the assumption held by current 

researchers regarding stepping force measurement is not realistic in terms of application, 

and as this study has shown, the use of a video display frame is essential for the 

identification of the front and hind paws through the peak signals. 

Keywords: arthritis; analgesimeter; nociception; stepping force; load cells 

 

1. Introduction  

 

Arthritis, a degenerative and debilitating disease, is associated with chronic pain of the joints, which 

can impair the ability to work and also lead to severe psychological and social problems [1]. 

Osteoarthritis is suffered by 15% of the world population [2], whereas rheumatoid arthritis, a chronic 

inflammatory illness, affects about 1% of the world’s population [3]. Rodent models of arthritis have 

been developed to help in elucidating the underlying pathophysiology involved in arthritis by 

identifying specific modulators or receptors involved in the pain process. To date, several behavioural 

tests for analgesic quantification using rats have been developed, which include: (i) paw withdrawal 

threshold and latency [4-6], (ii) withdrawal response to radiant heat [7] and (iii) arthritic rat walking 

on a rotating cylinder [8]. Although these tests provide valuable information about the pain mechanism 

and potential pharmacological therapies, they do suffer several drawbacks from a practical point of 

view. These tests often involve stressful manipulations of the animals [8-10], and the parameters 

measured in certain tests are not always suitable as indicators of pain. In order to prevent the stress 

factor on the rat, researchers have claimed [10] that only the use of the weight distribution model can 

be considered a fair measurement as it is able to provide an objective and non-evoked assessment of 

persistent chronic pain in animals. In 1995, the concept of measuring ground reaction force during rat 

locomotion was put forward by Clarke [11]. Forces and pressures exerted via fore and hind paws can 

be measured when the rat walks. Images from the ambulating rat were videoed via a mirror  
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at 45 degrees using a camera capturing images at 25 frames per second. Then, the camera captured 

both the monitor display of load cell output together with the corresponding paw contacts with the load 

cell platform [11]. Each recorded video frame was digitised in a frame grabber to produce an image 

with 256 × 256 pixels per frame. In the study, Clarke [11] only measured the paws and limbs through 

the peak signal from their stepping forces. However, Clarke [11] neglected the synchronisation 

between the stepping force and the image where the speed of the locomotion can vary unexpectedly. 

In 2001 Min et al. constructed a device to measure the weight load on each leg while the animal 

was walking through a path; the bottom of the device was equipped with strain gauge weight  

sensors [10]. This device helped to measure the weight load on the right hind leg. According to the 

researchers, decreased weight bearing in arthritic animals is one of the most commonly observed 

functional disabilities in such animals as well as arthritic human beings. Min et al. claimed that the 

proposed device was an effective tool for convenient measurement of arthritic pain, the advantage 

being that it captures a dynamic condition—the legs of a voluntarily walking rat. The rat is not 

restrained nor forced to maintain its static position [12]. Since the device measured weight load while 

the rat was walking freely, the state of the arthritic pain was reflected realistically. The limitation of 

this device is that no camera was installed to capture the real-time movements, thus the peak caused by 

the front paw could not be differentiated from that of the hind paw. Besides, the software used is 

proprietary and not customisable to the researcher’s requirement. For example, the stepping force and 

the movement of the rodent cannot be synchronised. 

After reviewing relevant literature, we concluded that no research related to the development of an 

analgesic meter associated with a well-programmed data acquisition system for investigating the 

standing weight force of rats has been published. Hence, a new prototype to measure the stepping 

force of the rodents was proposed. The proposed apparatus was fabricated with a new feature which 

was equipped with a built-in infrared CCD camera integrated with the analgesimeter. The camera is 

able to capture the locomotion of the rats and synchronise the stepping force concurrently, so each step 

can be correctly identified. 

2. Experimental Section  

2.1. Fabrication of the Analgesic Meter 

The design of the proposed system consists of an 8-channel analgesimeter and a data acquisition 

system. There are four main components in the analgesimeter: (i) apparatus, (ii) amplifiers station,  

(iii) video camera box and (iv) computer. Figure 1 shows the block diagram of the analgesimeter. 

The apparatus was composed of a starting box, a path and an arrival box. The floor of the path 

consisted of eight transparent Perspex plates (width × length: 5 cm × 7 cm) attached to load cells 

(strain gauge type, working range 0–600 g, DA cell, Korea). The sidewalls of the path were built with 

two L-shaped and a rectangular (cover) black Perspex plates. The other parts of the apparatus were 

made of aluminium. 

The output of each load cell was fed to an analogue amplifier (AM 100) (DA cell, Korea) for 

amplification to form a channel. The amplified signal was conducted to a personal computer via an 

LCPI 9112 analogue-digital converter (Adlink Tech. Inc., Taiwan). All the amplifiers were supplied 

with 240 V and the current was filtered (by a Cosel MAP-16-472-D noise filter, Cosel, Japan) before 
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being supplied to each amplifier. A bakelite box was designed to host a Huper H4MR type IR CCD 

camera (Huper, USA). The camera was connected to a Picolo PCI card (Euresys, USA) to transfer the 

captured images from the CCD camera to a personal computer. The computer was used to gather data 

acquired by the analgesimeter. 

Figure 1. Block diagram of the analgesimeter. During the rat locomotion, the stepping 

forces while the animal was walking across the sensor tunnel were measured by a load cell 

(ia) and images of the movements were captured by an infrared video camera (ib) 

simultaneously. The signals were amplified by an amplifier which was digitised by an 

analogue-digital converter (iia) and the images were processed by an image capture card 

(iib) before being stored in a hard disk (iii). 

 

Figure 2 shows the layout of the analgesimeter. Initially, a test was carried out by placing the rat in 

the starting box.  

Figure 2. Development of the analgesimeter. (a) Analgesimeter. (b) Amplifier box.  

(c) A/D converter card. (d) Camera box equipped with a CCD. (e) Sensor tunnel 

(containing eight channels and each channel consists of one load cell which is connected to 

an amplifier). (f) CCD installation. 
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Figure 2. Cont. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the rodent was walking through the sensor tunnel (consisting of eight channels; four on the 

left side and four on the right side), the weight load on a given leg of the rat could be sensed by load 

cells. This signal was then amplified by the amplifier in the amplifier box before being led to a 

computer by an analogue-digital converter. A CCD camera was also installed to capture the image 

reflected from the mirror in the camera box. The signals produced from the load cells and images 

captured by CCD camera were sequenced concurrently and stored in the personal computer using 

special data acquisition software. The sidewalls of the path in the apparatus were designed with two 

movable Perspex L-shaped plates so that the width of the path could be adjusted according to the body 

size of the animals. 

 

2.2. Data Acquisition System 

 

Visual Basic 6 was used to program the data acquisition software. A graphical user interface for the 

data acquisition system was deployed, as shown in Figure 3. The layout of the data acquisition system 

consists of a real-time video display frame, eight channels signal monitoring frame and a real-time 

signal display frame.  

Mirror 

Load cell 

Sensor Tunnel 

CCD camera 
Image 

(f) 
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Figure 3. Graphical user interface of the data acquisition system. 

 

To achieve a more precise and accurate measurement, a simple calibration method (Figure 4) which 

utilised the linear regression equation Y = mX + C [13], where: 

Y = signal after interpretation (gram) 

X = raw signal from amplifier (voltage) 

m = slop or gradient of calibration curve 

C = the meeting point of calibration curve on the y-axis 

Figure 4. New calibration with ‘OFFSET’ and Y = mX + C linear equation methods. 
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2.3. Validation of the Analgesimeter  

2.3.1. Precision 

Both intra-day and inter-day precision of the analgesimeter were measured by calculating the 

relative standard (RSD) of the measurements. Intra-day precision and inter-day precision of each 

channel of the analgesimeter were studied by measuring the weights of standard loads (i.e., 2, 5, 10, 

20, 50, 100 and 200 g) 10 times in a single day and for six days. The RSD was calculated using the 

following equation:  

100%
average

deviationstandard
RSD(%)   

2.3.2. Accuracy 

Each channel of the analgesimeter was equipped with standard load (i.e., 2, 5, 10, 20, 50, 100  

and 200 g) and the accuracy of each channel was calculated by comparing the value measured with 

reference weight according to the following equation: 

100%
weight reference

weightactual
)Accuracy(%   

2.4. In Vivo Study 

The in vivo test was carried out by using 16 rats comprising eight females and eight males. A rat 

was randomly selected to be placed in the starting box and allowed to walk voluntarily in the sensor 

tunnel until the arrival box.  

Figure 5. Video display frame. 
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Subsequently, the test was repeated at least three times a day for a total of six days. Then, the 

locomotion of the rat was observed to identify the peak signal of the front and hind paws. A non-expert 

of the related research domain was required to identify the peaks of the front and hind paw, 

respectively. In the event the non-expert was unable to identify the peaks, a video display frame was 

used to aid the non-expert in identifying the peak of the respective front and hind paw. Figure 5 shows 

the display frame that can be used to distinguish between the front and hind paw. 

 

3. Results and Discussion  

 

In order to prove the precision and accuracy of the measurement, the results for precision and 

accuracy of each channel were noted in Table 1. The means values of intra-day and inter-day precision 

are less than 1%. The results have also shown that the accuracy of the channels is convincing:  

99.36–100.36%. From the observation, two basic rat movements can be identified, and these are 

smooth movement and intermittent movement. Smooth and intermittent movements are referred to the 

style of movement of the tested rat when walking across the sensor tunnel. Smooth movement means 

that the rats were no stop when walking across the sensor tunnel, the stepping generated is clear and 

easy to identify. Intermittent movement means that the movements of the rats were not smooth, and the 

rats were stopped when walking across the sensor tunnel. 

 

Table 1. Precision and accuracy of each channel of analgesimeter. 

Channel 
Precision Accuracy 

(%) Intra-day Inter-day 

1 0.16 ± 0.20 0.66 ± 0.29 100.10 ± 0.20 

2 0.12 ± 0.19 0.52 ± 0.27 100.01 ± 0.17 

3 0.58 ± 0.86 0.73 ± 0.25 100.16 ± 0.45 

4 0.08 ± 0.19 0.56 ± 0.56 99.66 ± 0.32 

5 0.58 ± 1.37 0.70 ± 0.11 99.87 ± 0.13 

6 0.34 ± 0.57 0.71 ± 0.34 100.36 ± 0.50 

7 0.68 ± 0.09 0.88 ± 0.12 99.91 ± 0.18 

8 0.35 ± 0.48 0.69 ± 0.23 99.42 ± 0.57 

Note: Results are expressed as mean ± SD. 

 

During the test, when a rat walked voluntarily along the sensor tunnel without a halt, the manner of 

the rat’s movements was as indicated in Figure 6. Each and every stepping force by the front paw and 

hind paw is clearly shown in the eight channel signal monitoring frame. Since the tests were carried 

out a number of times, the rats’ movements were not always consistent and therefore, various states of 

peaks would appear (Figure 7). The indicator shows the state of the intermittent movement with the aid 

of the video display frame. For the male rats’ results, 50.27 ± 3.90% displayed intermittent movement. 

On the other hand, for the female rats, 62.20 ± 6.12% withheld their step on the sensor tunnel during 

the test. The results show that based on the observation made by the naked eye, it was difficult to 

conclude whether the rat made a halt or a movement. 
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Figure 6. Vertical peaks show front paw and hind paw. 

 

 

 

Figure 7. Intermittent movements of the rat. 

 

 

 

In an ideal situation, the front paw and hind paw should be clearly identifiable from the peaks, as 

shown in Figure 8, even without a video display frame. However, the percentage of interpretation 

without using the video display frame decreased approximately 51% (male rats) and 33% (female rats) 
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by the sixth day. The percentage falls from 67% to 36% for the male rats. It can be noted that the 

average value of the percentage is 51.20 ± 4.01% over the six days. On the other hand, the highest and 

lowest percentages of interpretation without using the video display frame (female rats) are 

approximately 50% and 17%, respectively, and the mean of the percentage for the six days  

is 33.24 ± 5.35%. The percentage of remaining results requiring video display frame interpretation 

increased to approximately 49% and 67% for the male and female rats, respectively, on the sixth day 

of the test. The highest and lowest percentages of remaining results requiring video display frame to 

interpret the movements of the male rats are approximately 64% and 33%, respectively. The mean of 

the percentage is 48.80 ± 4.01% for the six days. The percentage of remaining results requiring video 

display frame to interpret the movements of the female rats is within the range of 50% and 83%. 

Therefore, the mean of the percentage is 66.76 ± 5.35% for six days. 

 

Figure 8. Smooth movements of the rat. 

 

 

 

Accordingly, the aforementioned analysis indicates that as the number of days increases, the 

observer faces increasing difficulty when identifying the peak signals. Therefore, it shows that to 

identify the front and hind paws accurately, the observer needs the video display frame.  

Other researchers [10], have assumed that the first and second peaks represent the front and hind 

paws respectively. In fact, it is difficult to differentiate between the front and hind paw without the aid 

of the video display frame, as shown from the present study. Figure 9 clearly illustrates the uncertainty 

associated with the occurrence of peak signals. While Peak A represents the front paw, the second 

peak shown (Peak B) is also the front paw, whereas the third and fourth peaks (Peak C) and (Peak D) 

indicate the hind paws, respectively. From the results obtained, it has been proven that the assumption 
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of Min et al. [10] is not realistically applicable for stepping force measurement. Hence, the use of the 

video display frame is essential for accurate observation. 

Currently, using the existing devices, the researcher needs a great deal of time and patience to 

observe the motion of the rats. An observer needs to select an appropriate image that closely resembles 

the generated signal. When the rats are not willing to walk along the apparatus or remain in a resting 

state, he needs to wait patiently for the rat to walk voluntarily since some of the existing devices are 

not able to capture real-time motion. During the stage of data acquisition, the movement of the rat may 

not consistently produce two peaks that represent the front and hind paws as mentioned by Min et al. [10]. 

In order to obtain the required results, the rat might need to walk many times. Due to this factor, the 

stepping force of the rat will be affected. Therefore, the aforementioned phenomenon may produce 

both false negative and positive results. 

 

Figure 9. Uncertain occurrence of a peak signal. During the rat locomotion, the stepping 

forces were captured and displayed in real-time signal display frame and video display 

frame concurrently. The four peak signals which are showed in channel 1 are represented 

in (A) front paw (B) front paw (C) hind paw (D) hind paw.  
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4. Conclusions  

Although the weight distribution model proposed by Min et al. [10] is considered a fair 

measurement to quantify the level of pain [10], our proposed apparatus has proven that the assumption 

of Min et al. [10] is not practically applicable for identifying the peak signal of the front paw and hind 

paw of the rodent model. The apparatus proposed is this paper includes a new feature, that is, it 

integrates a built-in infrared CCD camera integrated with the analgesimeter. Hence, the camera is able 

to capture the locomotion of the rats and synchronise the stepping force concurrently so that each step 

can be identified and interpreted correctly using the data acquisition system. 

 

Acknowledgements 

This study was supported by Malaysia Toray Science Foundation (MTSF), USM-Short Term 

Research Grant Scheme (304/PFARMASI/638114), and USM-Research University Postgraduate 

Research Grant Scheme. 

References 

1.  Isenberg, D.A.; Maddison, P.; Woo, P. Oxford Textbook of Rheumatology; Oxford University 

Press: London, UK, 2004; p. 48. 

2.  Felson, D.T. The Epidemiology of Osteoarthritis: Prevalence and Risk Factors in Osteoarthritis 

Disorder. In Osteoarthritis Disorders; Kuettner, K.E., Goldberg, V.M., Eds.; American Academy 

of Orthopaedic Surgeons: Rosemont, IL, USA, 1995; pp. 13-24.  

3.  Robert, R.S.; Steven, J.K. Emergency Orthopedics: The Extremities, 4th ed.; McGraw-Hill 

Professional: New York, NY, USA, 2001. 

4.  Yu, Y.C.; Koo, S.T.; Kim, C.H.; Lyu, Y.; Grady, J.J.; Chung, J.M. Two variables that can be used 

as pain indices in experimental animal model of arthritis. J. Neurosci. Method. 2002, 115,  

107-113. 

5.  Fernihough, J.; Gentry, C.; Malcongio, M.; Fox, A.; Rediske, J.; Pellas, T.; Kidd, B.; Bevan, S.; 

Winter, J. Pain related behaviour in two models of osteoarthritis in the rat knee. Pain 2004, 112, 

83-93. 

6.  Vivancos, G.G.; Verri, W.A., Jr.; Cunha, T.M.; Schivo, I.R.S.; Parada, C.A.; Cunha, F.Q.;  

Ferreira, S.H. An electronic pressure-meter nociception paw test for rats. Braz. J. Med. Biol. Res. 

2004, 37, 391-399. 

7.  Lavich, T.R.; Cordeiro, R.S.B.; Silva, P.M.R.; Martins, M.A. A novel hot-plate test sensitive to 

hyperalgesic stimuli and non-opioid analgesics. Braz. J. Med. Biol. Res. 2005, 38, 445-451. 

8.  Tonussi, C.R.; Ferreira, S.H. Rat knee-joint carrageenan incapacitation test: An objective screen 

for central and peripheral analgesics. Pain 1992, 48, 421-427. 

9.  Sluka, K.A.; Westlund, K.N. Behavioral and immunohistochemical changes in an experimental 

arthritis model in rats. Pain 1993, 55, 367-377. 

10.  Min, S.S.; Han, J.S.; Kim, Y.I.; Na, H.S.; Yoon, Y.W.; Hong, S.K.; Han, H.C. A novel method for 

convenient assessment of arthritic pain in voluntarily walking rats. Neurosci. Lett. 2001, 308,  

95-98. 



Sensors 2011, 11                            

 

 

5070 

11.  Clarke, K.A. Differential Fore- and hindpaw force transmission in the walking rat. Physiol. Behav. 

1995, 58, 415-419. 

12.  Han, J.S.; Bird, G.C.; Li, W.; Neugebauer, V. Computerized analysis of audible and ultrasonic 

vocalizations of rats as a standardized measure of pain-related behaviour. J. Neurosci. Method. 

2005, 141, 261-269. 

13.  Dempster, J. The Laboratory Computer; Academic Press: London, UK, 2001. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


