SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2014 SESSION

SUBJECT CODE	: FMD12103
SUBJECT TITLE	: STATICS AND DYNAMICS
LEVEL	: DIPLOMA
TIME / DURATION	: 8.00 PM – 10.30 PM (2.5 HOURS)
DATE	: 30 DECEMBER 2014

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer ALL questions in Section A. For Section B, answer TWO (2) questions only.
- 6. Answer all questions in English.

THERE ARE 5 PAGES OF QUESTIONS AND 2 PAGE OF APPENDICES, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.

Question 1

The radius of a sphere is measured to be 7.9 cm, and its mass is measured to be 1.65 kg. The sphere is solid. Determine its **density in kilograms per cubic meter** and **the relative density**.

(10 marks)

Question 2

In Figure 1, determine the magnitude of the resultant force acting on the bracket.

(10 marks)

Figure 1

Question 3

Determine *the tension in chain AC* and *weight of the box* so that the particle is in equilibrium as shown in *Figure 2*. The tension in chain *AB* is *300 N*.

(10 marks)

Figure 2

Question 4

Determine *the resultant moment about the bolt located at A* as shown in *Figure 3* below.

(10 marks)

Question 5

An electric motor starting from *500 rpm* to reach speed of *1440 rpm* for *20 seconds*. Calculate *the angular acceleration* and *the angular displacement* made by the motor during this period.

(10 marks)

Question 6

A box of mass *110 kg* is sliding down of an inclined plane, which makes an angle of *35°* to the horizontal. If the coefficient of kinetic friction is *0.43*, calculate *the acceleration of the box*.

(10 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only. Please use the answer booklet provided.

Question 7

Compute the coordinates of the centroid of the thin plate as shown in Figure 4.

(20 marks)

Figure 4

Question 8

The boy in *Figure 5* throws the ball horizontally at point *A*. Determine:

- (a) the time of flight t_{AB} ,
- (b) the initial velocity VA,

(4 marks)

(4 marks)

(c) the final velocity at **B** and it direction.

(12 marks)

Question 9

In *Figure 6*, the block of weight of *500 N* slides down the inclined plane for which the coefficient of friction is *0.25*. If it is moving at speed *V* when it reaches point *A*, determine *the maximum deformation of the spring* needed to momentarily arrest the motion.

(20 marks)

Figure 6

END OF QUESTION

APPENDICES: FORMULAE AND TABLES

Linear Motion	Angular Motion
$S = V_0 t + \frac{1}{2} a t^2$	$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$
$V = V_0 + a t$	$\omega = \omega_0 + \alpha t$
2 a S = V ² - V ₀ ²	$2 \alpha \theta = \omega^2 - \omega_0^2$

Relationship between Linear Motion and Angular Motion:	
$S = r \theta$	$\mathbf{r}_{A} \mathbf{\theta}_{A} = \mathbf{r}_{B} \mathbf{\theta}_{B}$
$V = r \omega$	$\mathbf{r}_{A} \omega_{A} = \mathbf{r}_{B} \omega_{B}$
$a = r \alpha$	$\mathbf{r}_{A} \alpha_{A} = \mathbf{r}_{B} \alpha_{B}$

```
Kinetic of a Particles:
```

Newton's 2nd law of motion, $\Sigma F = m a$ Frictional force, $F_f = \mu F_n$ Weight, W = m g $a = V^2 / r$, $a = \omega^2 r$ Torque, T = F r, $T = I \alpha$ (*Solid cylinder*) Mass moment of inertia, $I = \frac{1}{2} m r^2$

Work done by a force, U = F S Work done against gravity, U = m g h Work done by a torque, U = T θ

$$\label{eq:power} \begin{split} \text{Power},\, \text{P} = \text{U}\,/\,t \quad,\quad \text{P} = \text{F}\, \text{V} \quad,\quad \text{P} = \text{T}\,\omega \\ \text{Efficiency},\, \epsilon = \text{P}_{\text{output}}\,/\,\text{P}_{\text{input}} \end{split}$$

Kinetic Energy (*Linear*), KE = $\frac{1}{2}$ m V² Kinetic Energy (*Angular*), KE = $\frac{1}{2}$ I $\frac{1}{2}$ Potential Energy, PE = m g h Strain Energy, SE = $\frac{1}{2}$ k x²

Center of Gravity and Centroid:

$$\overline{x} = \frac{\sum A\widetilde{x}}{\sum A} \qquad \overline{y} = \frac{\sum A\widetilde{y}}{\sum A}$$

Table 1: Properties of some common plane areas and centroid of areas.