UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2014 SESSION

SUBJECT CODE	$:$ FMD12103
SUBJECT TITLE	$:$ STATICS AND DYNAMICS
LEVEL	$:$ DIPLOMA
TIME / DURATION	$: 8.00$ PM - 10.30 PM
	$(2.5$ HOURS)
DATE	$: 30$ DECEMBER 2014

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer ALL questions in Section A. For Section B, answer TWO (2) questions only.
6. Answer all questions in English.
there are 5 PAGES OF QUESTIONS AND 2 PAGE OF APPENDICES, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

The radius of a sphere is measured to be 7.9 cm , and its mass is measured to be 1.65 kg . The sphere is solid. Determine its density in kilograms per cubic meter and the relative density.

Question 2

In Figure 1, determine the magnitude of the resultant force acting on the bracket.
(10 marks)

Figure 1

Question 3

Determine the tension in chain AC and weight of the box so that the particle is in equilibrium as shown in Figure 2. The tension in chain $A B$ is 300 N .
(10 marks)

Figure 2

Question 4

Determine the resultant moment about the bolt located at \boldsymbol{A} as shown in Figure 3 below.
(10 marks)

Figure 3

Question 5

An electric motor starting from 500 rpm to reach speed of 1440 rpm for 20 seconds. Calculate the angular acceleration and the angular displacement made by the motor during this period.
(10 marks)

Question 6

A box of mass 110 kg is sliding down of an inclined plane, which makes an angle of 35° to the horizontal. If the coefficient of kinetic friction is 0.43 , calculate the acceleration of the box.
(10 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.
Please use the answer booklet provided.

Question 7

Compute the coordinates of the centroid of the thin plate as shown in Figure 4.
(20 marks)

Figure 4

Question 8

The boy in Figure 5 throws the ball horizontally at point A. Determine:
(a) the time of flight $\boldsymbol{t}_{A B}$,
(b) the initial velocity V_{A},
(c) the final velocity at \boldsymbol{B} and it direction.

Figure 5

Question 9

In Figure 6, the block of weight of 500 N slides down the inclined plane for which the coefficient of friction is 0.25 . If it is moving at speed V when it reaches point A, determine the maximum deformation of the spring needed to momentarily arrest the motion.
(20 marks)

Figure 6

END OF QUESTION

APPENDICES: FORMULAE AND TABLES

Linear Motion	Angular Motion
$S=V_{0} t+1 / 2 a t^{2}$	$\theta=\omega_{0} t+1 / 2 \alpha t^{2}$
$V=V_{0}+a t$	$\omega=\omega_{0}+\alpha t$
$2 a S=V^{2}-V_{0}{ }^{2}$	$2 \alpha \theta=\omega^{2}-\omega_{0}{ }^{2}$

Relationship between Linear Motion and Angular Motion:	
$S=r \theta$	$r_{A} \theta_{A}=r_{B} \theta_{B}$
$V=r \omega$	$r_{A} \omega_{A}=r_{B} \omega_{B}$
$a=r \alpha$	$r_{A} \alpha_{A}=r_{B} \alpha_{B}$

Kinetic of a Particles:

Newton's $2^{\text {nd }}$ law of motion, $\Sigma \mathrm{F}=\mathrm{m}$ a
Frictional force, $\mathrm{F}_{\mathrm{f}}=\mu \mathrm{F}_{\mathrm{n}}$
Weight, $\mathrm{W}=\mathrm{mg}$
$\mathrm{a}=\mathrm{V}^{2} / \mathrm{r}, \mathrm{a}=\omega^{2} . \mathrm{r}$
Torque, $\mathrm{T}=\mathrm{Fr}, \mathrm{T}=\mathrm{I} \alpha$
(Solid cylinder) Mass moment of inertia, I = $1 / 2 \mathrm{~m} \mathrm{r}{ }^{2}$

Work done by a force, $\mathrm{U}=\mathrm{F}$ S
Work done against gravity, $\mathrm{U}=\mathrm{mgh}$
Work done by a torque, $\mathrm{U}=\mathrm{T} \theta$

Power, $\mathrm{P}=\mathrm{U} / \mathrm{t}, \quad \mathrm{P}=\mathrm{FV}, \quad \mathrm{P}=\mathrm{T} \omega$
Efficiency, $\varepsilon=P_{\text {output }} / P_{\text {input }}$

Kinetic Energy (Linear), KE = $1 / 2 \mathrm{~m} \mathrm{~V}^{2}$
Kinetic Energy (Angular), KE = $1 / 2 \mathrm{I} \omega^{2}$
Potential Energy, $\mathrm{PE}=\mathrm{mgh}$
Strain Energy, $\mathrm{SE}=1 / 2 \mathrm{k} \mathrm{x}^{2}$

Center of Gravity and Centroid:

$$
\bar{x}=\frac{\sum A \tilde{x}}{\sum A} \quad \bar{y}=\frac{\sum A \tilde{y}}{\sum A}
$$

Table 1: Properties of some common plane areas and centroid of areas.

