UNIVERSITI KUALA LUMPUR

Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2014 SESSION

SUBJECT CODE	FMB11103
SUBJECT TITLE	STATICS AND DYNAMICS
LEVEL	BACHELOR
TIME / DURATION	3.30 PM - 6.00 PM (2.5 HOURS)
DATE	6 JANUARY 2015

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of 5 questions. Answer any FOUR (4) questions.
6. Answer all questions in English.

THERE ARE 4 PAGES OF QUESTIONS, EXCLUDING THIS COVER PAGE.

INSTRUCTIONS: Answer FOUR (4) questions ONLY.

Please use the answer booklet provided.

Question 1

(a) A 50 kg block rests on a 20° incline plane, as shown in Figure 1. The coefficient of static friction between the block and the plane is 0.4 . Determine the maximum horizontal force P that can be applied to the block without causing it to slide.
(10 marks)

Figure 1
(b) The winch on the truck as shown in Figure 2 is used to hoist the garbage bin onto the bed of the truck. If the loaded bin has weight 37.81 kN and centre of gravity at G, determine the force in the cable needed to begin the lift. The coefficients of static friction at A and B are μA and μB respectively. Neglect the height of the support at A. Given: $\mu A=0.3, \mu B=0.2, \mathrm{a}=3048 \mathrm{~mm}, \mathrm{~b}=9144 \mathrm{~mm}$ and $\theta=30 \mathrm{deg}$. (Hint: find moment at point B).
(15 marks)

Figure 2

Question 2

The engine of mass M is suspended from a vertical chain at A. A second chain is wrapped around the engine and held in position by the spreader bar $B C$. Determine the compressive force acting along the axis of the bar and the tension forces in segments $B A$ and $C A$ of the chain. Hint: Analyze equilibrium first at A, then at B. (Figure 3)
(25 marks)

Given:

$$
M=200 \mathrm{~kg}
$$

$$
\theta_{1}=55 \mathrm{deg}
$$

$$
g=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

Figure 3

Question 3

a) Two boys push on the gate as shown in Figure 4. If the boy at B exerts a force $F_{B}=$ 30 lb , determine the magnitude of the force F_{A} the boy at A must exert in order to prevent the gate from turning. Neglect the thickness of the gate.
(6 marks)

Figure 4
b) The boom in Figure 5 has length L , weight W_{b} and mass center at G . if the maximum moment that can be developed by the monitor at A is M . determine the maximum load W , having a mass center at G^{\prime} that can be lifted. Given: $\mathrm{L}=30 \mathrm{ft}, \mathrm{W}_{\mathrm{b}}=800 \mathrm{lb}$, a $=14 \mathrm{ft}, \mathrm{b}=2 \mathrm{ft}, \theta=30^{\circ}, \quad \mathrm{M}=20 \times 10^{3} \mathrm{lb} . \mathrm{ft}$

Figure 5
c) Determine the magnitude of the force F that should be applied at the end of the lever such in Figure 6 that this force creates a clockwise moment M about point O.

Given: $\mathrm{M}=15 \mathrm{Nm}, \theta=30^{\circ}, \varnothing=60^{\circ}, \mathrm{a}=50 \mathrm{~mm}, \mathrm{~b}=300 \mathrm{~mm}$

Figure 6

Question 4

(a) Explain the term linear motion using a simple example.
(b) A stone A is dropped from rest down a well, and at time t_{1} another stone B is dropped from rest. Determine the distance between the stones at a later time t_{2} given that $d=$ $24 \mathrm{~m}, \mathrm{t}_{1}=1 \mathrm{~s}$ and $\mathrm{t}_{2}=2 \mathrm{~s}$.
(10 marks)
(c) Describe Newton's $2^{\text {nd }}$ Law of Motion using a simple numerical example.
(10 marks)

Question 5

(a) The angular velocity of the disk of radius 0.8 m is defined by $\omega=5 t^{2}+2$. Determine the magnitudes of the velocity and acceleration of point A that is measured at 120 degrees from the disk center disk when $t=0.5 \mathrm{~s}$.
(10 marks)
(b) A car has a mass M and accelerates along a horizontal straight road from rest such that the power is always a constant amount P. Determine how far it must travel to reach a speed of v.
(c) Define and explain the following terms :- conservation of energy principle and power.

