## UNIVERSITI KUALA LUMPUR Malaysia France Institute

## FINAL EXAMINATION SEPTEMBER 2014 SESSION

| SUBJECT CODE | $:$ FLD10202 |
| :--- | :--- |
| SUBJECT TITLE | $:$ INSTRUMENTATION |
| LEVEL | $:$ DIPLOMA |
| TIME / DURATION | $:$12.45 PM - 2.45 PM <br>  <br> (2 HOURS ) <br> DATE |

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
6. Answer all questions in English.

THERE ARE 8 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

## SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

## Question 1

(a) List out four (4) static characteristics that show the performance of an instrument.
(b) State the three (3) categories of systematic error and give one example of each.
(c) A voltmeter reads 110 V . The error taken from an error curve is $5 \%$. Determine:
(i) The true value (expected value) of the voltage.
(4 marks)
(ii) The relative accuracy.
(iii) The \% of accuracy.

## Question 2

(a) List out the four (4) groups of control panel of C.R.O (cathode ray oscilloscope).
(b) State and draw three (3) standard waveforms that can be delivered by a function generator.
(c) In an experiment, a function generator is used to generate a sinusoidal waveform of $1 \mathrm{kHz}, 8 \mathrm{~V}_{\mathrm{Pp}}$. An oscilloscope (C.R.O) is used to display the waveform with the vertical scale set to $2 \mathrm{~V} / \mathrm{div}$ and the horizontal scale set to $0.5 \mathrm{~ms} /$ div respectively.
(i) Draw the waveform on the C.R.O screen shown in Figure 1.
(7 marks)
(ii) Calculate the root-mean-square/effective value of the sinusoidal waveform, $V_{\text {RMS }}$.

Answer for question 2(c)i.

## (ATTACH THIS PAPER TOGETHER WITH THE ANSWER BOOKLET)

ID Number:


Figure 1

## Question 3

(a) Figure 2 shows a Permanent Magnet Moving Coil type of instrument circuit. Based on the figure, answer the following questions.


Figure 2
(i) Give another name of this instrument.
(ii) The instrument has the following data:

> Number of turns $=150$
> Width of the coil $=22 \mathrm{~mm}$
> Length of the coil $=30 \mathrm{~mm}$
> Flux density in the gap $=0.1 \mathrm{~Wb} / \mathrm{m}^{2}$

Calculate the deflecting torque when carrying a current of 15 mA and the deflection, if the control spring constant is $2 \times 10^{-6} \mathrm{Nm} /$ Degree.
(9 marks)
(b) Figure 3 shows an Electrodynamometer.


Figure 3
(i) Explain the basic principle of this instrument.
(ii) List out two (2) advantages and disadvantages of this instrument.

## SECTION B (Total: 40 marks)

INSTRUCTION: Answer only TWO (2) questions.
Please use the answer booklet provided.

## Question 4

(a) Design a multi-range DC miliammeter with a basic meter having a resistance $70 \Omega$ and full scale deflection for the current of 2 mA . The required ranges are $0-5 \mathrm{~mA}, 0-$ 50 mA and 0-100 mA. Your design should provide the following:
(i) The value of shunt resistance for each range.
(ii) The multi-range miliammeter circuit.
(b) A basic D'Arsonval movement meter with an internal resistance of $1000 \Omega$ and full scale deflection current of $50 \mu \mathrm{~A}$ is to be used as a multi-range voltmeter. Design the series string of multipliers to obtain the voltage ranges of $0-5 \mathrm{~V}, 0-50 \mathrm{~V}, 0-100 \mathrm{~V}$ and $0-$ 250 V . (You are required to draw the multi-range voltmeter circuit)

## Question 5

(a) Meter A has a range of $0-100 \mathrm{~V}$ and multiplier resistance of $20 \mathrm{k} \Omega$. Meter B has a range $0-500 \mathrm{~V}$ and a multiplier resistance of $50 \mathrm{k} \Omega$. Both meters have basic meter resistance of $5 \mathrm{k} \Omega$. Which meter is more sensitive? Justify your answer.
(b) A D'Arsonval movement meter having an internal resistance of $100 \Omega$ and full scale current of $50 \mu \mathrm{~A}$ is used to perform the following measurement as tabulated in Table 1 :

## Table 1

| Measured voltage (Volt) | 3.15 | 3.00 | 2.98 | 3.05 | 2.95 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency of occurrence | 1 | 2 | 1 | 2 | 2 |

Determine:
(i) The arithmetic mean.
(ii) The deviation of each value.
(iii) The average deviation for the data.
(iv) The standard deviation for the data.

## Question 6

(a) There are two (2) types of Bridge circuits; DC bridges and AC bridges. Briefly explain the differences between them.
(b) List out two (2) major applications of the Wheatstone's bridge.
(4 marks)
(c) An unbalanced Wheatstone bridge is given in Figure 4. Calculate the current through the galvanometer.
(12 marks)


Figure 4

## APPENDIX

## FORMULA

1. Absolute error, $\mathrm{e}=\mathrm{Y}_{\mathrm{n}}-\mathrm{X}_{\mathrm{n}}$
2. . error $=\frac{e}{Y_{n}} \times 100$
3. Relative Accuracy, $A=1-\left|\frac{Y_{n}-X_{n}}{Y_{n}}\right|$
4. Precision $=1-\left|\frac{X_{n}-\overline{X_{n}}}{\overline{X_{n}}}\right|$
5. $\quad V_{p}=\frac{V_{r m s}}{0.707}$
6. Arithmetic mean $=\bar{x}=\frac{x_{1}+x_{2}+\ldots \ldots \ldots+x_{n}}{n}$
7. Deviation, $d_{n}=x_{n}-\bar{x}$
8. Average deviation, $D_{a v}=\frac{\left|d_{1}\right|+\ldots \ldots .+\left|d_{n}\right|}{n}$
9. Standard deviation, $\sigma=\sqrt{\frac{d_{1}^{2}+d_{2}^{2}+\ldots \ldots . .+d_{n}^{2}}{n-1}} \quad$ for $\mathrm{n}<30$
10. Deflecting torque, $\tau_{d}=B x A x N x I$
11. Deflecting torque, $\tau_{d}=K \theta$
12. Shunt resistor, $R_{s h}=\frac{I_{M} \times R_{M}}{I_{S H}}$
13. Multiplier resistor, $R_{S}=\frac{V}{I_{M}}-R_{M}$
14. Current through galvanometer, $I_{G}=\frac{E_{T H}}{R_{G}+R_{T H}}$
