CONFIDENTIAL

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2014 SESSION

SUBJECT CODE	:	FLB12013 / FLB12023
SUBJECT TITLE	:	ANALOG ELECTRONICS
LEVEL	:	BACHELOR
TIME / DURATION	:	3.30 PM – 6.00 PM (2.5 HOURS)
DATE	:	08 JANUARY 2015

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
- 6. Answer all questions in English.
- 7. Do not open the question paper until instructed to do so

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.

Question 1

(a)	Define:				
	(i) Intrinsic material(ii) Extrinsic material	(2 marks) (2 marks)			
(b)	Briefly explain the formation of:				
	(i) N-type materials	(3 marks)			
	(ii) P-type materials	(3 marks)			

(c) Refer to **Figure 1**, determine:

(i)	The current, I	(4 marks)
(ii)	The output voltage at Vo1 and Vo2	(6 marks)

Figure 1

(3 marks)

Question 2

(a) **Figure 2** shows a half-wave rectifier with a silicon diode.

- (i) Determine the output voltage, V₀ (3 marks)
- (ii) Sketch the output waveform
- (iii) Calculate the average output voltage, V_{dc} (3 marks)

Figure 2

(b) **Figure 3** shows a full-wave rectifier with silicon diodes.

(i)	Determine the output voltage, Vo	(5 marks)
(ii)	Sketch the output waveform	(3 marks)
(iii)	Calculate the average output voltage, Vdc	(3 marks)

Figure 3

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only. Please use the answer booklet provided.

Question 3

Figure 4 shows a regulator network of a Zener diode.

- (a) Determine Vimin, IL, IRmax and Vimax that will maintain the Zener diode in the "on" state (14 marks)
- (b) Calculate the maximum wattage rating of the Zener diode (3 marks)
- (c) Sketch a plot of V_L versus Vi.

Figure 4

(3 marks)

CONFIDENTIAL

Question 4

(a)	List tv	vo (2) basic types of transistor.	(2 marks)
(b)	Refer IE = 4	to fixed-bias configuration in Figure 5 , given $Rc = 2.2 \text{ k}\Omega$, $IB = 20 \mu\text{A}$, mA and $VcE = 7.2 V$. Determine:	
	(i)	VBE and VE	(3 marks)
	(ii)	lc	(3 marks)
	(iii)	Vcc	(3 marks)
	(iv)	β	(3 marks)
	(v)	Rв	(3 marks)
	(vi)	ICsat	(3 marks)

Figure 5

CONFIDENTIAL

Question 5

Refer to the emitter-stabilized bias circuit in Figure 6, calculate:

Figure 6

(10 marks)

Question 6

(a)

Calculate Vo for the circuit shown in Figure 7:

(b) Design a first order low pass filter which enable to filter the signal above 1.5 kHz with a voltage gain of 6. Given $R_G = 10 k\Omega$ and capacitor, $C_1 = 0.05 \mu F$.

(10 marks)

END OF QUESTION PAPER