

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	:	NMB10102
SUBJECT TITLE	:	ELECTRICAL ENGINEERING
LEVEL	:	BACHELOR
TIME / DURATION	:	2.5 HOURS
DATE	:	

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. Answer five (5) questions only.
- 6. Answer all questions in English.

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

INSTRUCTION: Answer FIVE questions only. Please use the answer booklet provided.

Question 1

i.) In the circuit shown in figure 1, determine voltage, V_x and current, I_o .

(15 marks)

ii.) If $R_T = 50 \Omega$ in the circuit in figure 2, determine value of resistor, R

(5 marks)

Figure 2

JANUARY 2014

CONFIDENTIAL

Question 2

i.) Obtain the mesh current equations for the circuit in figure 3, and find current flows through resistor 2 Ω , 3 Ω , 4 Ω and 6 Ω respectively.

(8 marks)

ii.) Apply superposition principle to find V_o in the circuit in figure 4

(12 marks)

Figure 4

Question 3

i.) Apply Thevenin's Theorem to find V_{\circ} in the circuit shown in figure 5.

(12 marks)

- ii.) For the system shown in figure 6.
 - a. Find the total number of watts, volt-amperes reactive, volt-amperes and power factor F_p
 - b. Draw the power triangle
 - c. Find the current, I_s

(8 marks)

Figure 6

Question 4

The phase sequence for the Y and Δ system in figure 7 is RYB.

Determine :

- a. Phase current I_a , I_b and I_c .
- b. Phase current I_1 , I_2 , I_3 and I_n
- c. Line current I_{Rr} , I_{Yy} and I_{Bb}
- d. Line current I_R , I_Y and I_B
- e. Total power for the system, P_T

 I_R R I_{γ} Y I_B В 415V I_{Rr} I_{Yy} I_{Bb} W I_3 I_2 I_1 6Ω 8Ω $18\angle 34^{o}\Omega$ $-j2\Omega$ - *j*4Ω 10Ω – *j*6Ω $11.31\angle 45^{\circ}\,\Omega$ $21.6\angle -34^{\circ}\Omega$ ÷ y I_b b v n Ν I_n

Figure 7

(20 marks)

Question 5

- i.) The load taken from an a.c supply 240 V, 50 Hz consists of :
 - A heating load of 15 kW
 - A motor load of 40 kVA at 0.6 lagging power factor
 - A load of 20 kW at 0.8 lagging power factor.
 - a. Calculate the total load from the supply (in kW and kVA) and its power factor.
 - b. What would be the capacitor rating to bring the power factor to unity and how would the capacitor be connected ?

(10 marks)

ii.) Find the Thevenin equivalent of the circuit in figure 8 as seen from terminal a-b.

(10 marks)

Figure 8

Question 6

i.) Define the purpose of laminating the core in a transformer.

(5 marks)

- ii.) The high voltage and low voltage winding of a 1100/110 V single phase 50 Hz transformer has resistance of 2.4 Ω and 0.02 Ω and reactances of j 1 Ω and j 0.009 Ω respectively. The low voltage winding is connected to a load having an impedance of (3 + j2) Ω . Determine : (10 marks)
 - a. Current in L.V winding
 - b. Current in H.V winding
 - c. The load voltage
 - d. Power consumed by the load.
- iii.) The input power to a 3-phase induction motor is 60 kW. The stator-losses total 1.5 kW.Find the total mechanical power developed if the motor is running with a slip of 4 %

(5 marks)

END OF QUESTIONS PAPER