UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	$:$ FAD 30203	
SUBJECT TITLE	$:$ CONTROL ENGINEERING	
LEVEL	$:$ DIPLOMA	
TIME / DURATION	$:$	(3 HOURS)
DATE	$:$	

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer TWO (2) questions only.
6. Answer all questions in English.
7. Semi-log paper and formula is appended

SECTION A (Total: 60 marks)

INSTRUCTION: Answer all the questions.
Please use the answer booklet provided.

Question 1

(a) A Segway® Personal Transporter (PT) is a two wheeled vehicle in which human act as operator stands vertically on a platform. As the driver leans left, right, forward and backward, a set of sensitive gyroscopic sensors sense the desired input. These signals are fed to a computer that amplifies them and commands motors to propel the vehicle in the desired direction. Determine whether the system is an open-loop or a closed-loop control system and provide your justification.

Figure 1: The Segway® Personal Transporter (PT)
(b) Consider the human is trying to reach for a book in the table. Determine the reference input and the controller of the task.
(c) Describe how does an open-loop system differs from closed-loop systems. List one (1) advantage of each system.
(d) Find the forward Laplace for:
i. $5 \frac{d^{2} y(t)}{d t^{2}}+8 \frac{d y(t)}{d t}+3 y(t)$.
ii. $\frac{t^{6-1} e^{-2 t}}{6-1!}$.
(e) Find the inverse Laplace for $\frac{8}{s\left(s^{2}+5 s+6\right)}$.

Question 2

(a) Prove that for a positive-feedback closed-loop control system, the system transfer function is $T F=\frac{G}{1-G H}$, where \boldsymbol{G} is forward gain and \boldsymbol{H} is feedback gain.
(5 marks)
(b) Simplify the block diagram of a system shown in Figure 2 to a single block representing the transfer function, $T F(s)=\frac{C(s)}{R(s)}$.
(12 marks)

Figure 2: Block Diagram
(b) Obtain the transfer function, $T F(s)$ if $\mathrm{G} 1(\mathrm{~s})=1, \mathrm{G} 2(\mathrm{~s})=2, \mathrm{G} 3(\mathrm{~s})=4, \mathrm{G} 4(\mathrm{~s})=2, \mathrm{G} 5(\mathrm{~s})=1$, G6(s)=2 and G7(s)=1.

Question 3

(a) Define mathematical modeling.
(b) Determine the transfer function of the circuit in Figure 3 for output voltage $\operatorname{Vo}(s)$, versus input voltage $\operatorname{Vi}(s)$. Output voltage is measured across the $R 2$ and C.
(10 marks)

Figure 3: Series RC circuit
(c) A basic mechanical system consist of three passive and linear components; mass, spring and viscous damper. Derive the mathematical model that describe the relationship between force $f(t)$ and displacement $x(t)$ for each components.
(d) Provide an example of mechanical system that you know.

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.

Please use the answer booklet provided.

Question 4

(a) Find the transfer function for the unit step response of the first order response below.

Figure 4: First Order response
(b) Given that the settling times (Ts) of the second order response below is 3.54 s and find the transfer function of the system.

Figure 5: Second Order response

Question 5

Figure 6: PID controller with plant module system
(a) Define and give an application of PID controller.
(4 marks)
(b) Find the transfer function of PID controller.
(5 marks)
(c) Based on Figure 6 find the transfer function when PID controller connected in series with the plant module.
(5 marks)
(d) Give the characteristic of P, I and D controller.
(6 marks)

Question 6

(a) Draw a Bode plot of the unity feedback system shown in Figure 7.

Figure 7: The unity feedback system

Where $G(s)=\frac{60}{s(s+5)(s+12)}$
(b) From the Bode plot, determine the following:
i. Gain margin, $G M$ (1 mark)
ii. Phase margin, $P M$ (1 mark)
iii. Gain cross over frequency, $\omega_{\text {gco }} \quad$ (1 mark)
iv. Phase cross over frequency, $\omega_{p c o} \quad$ (1 mark)
(c) Give your comment on the stability. (2 marks)

1. Cascading Blocks:

2. Blocks in parallel: Forward Loop

3. Moving the summing ahead of the block:

4. Moving the summing beyond the block:

5. Moving the takeoff point ahead of a block:

6. Moving the takeoff point beyond a block:

APPENDIX 2: TABLE OF LAPLACE TRANSFORMS

	Time domain $\mathrm{f}(\mathrm{t})$	Laplace domain F(s)
1	Unit impulse $\delta(t)$	1
2	Unit Step Function $u(t)$	$\frac{1}{s}$
3	Constant K	$\frac{K}{s}$
4	t	$\frac{1}{s^{2}}$
5	t^{2}	$\frac{2!}{s^{3}}$
6	$\frac{t^{2}}{2!}$	$\frac{1}{s^{3}}$
7	t^{n}	$\frac{n!}{s^{n+1}}$
8	$\frac{t^{n-1}}{n!}$	$\frac{1}{s^{n}}$
9	$e^{-a t}$	$\frac{1}{s+a}$
10	$t \cdot e^{-a t}$	$\frac{1}{(s+a)^{2}}$
11	$\frac{t^{2} e^{-a t}}{2!}$	$\frac{1}{(s+a)^{3}}$
12	$\frac{t^{n-1} e^{-a t}}{n-1!}$	$\frac{1}{(s+a)^{n}}$
13	$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}}$
14	$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}}$
15	$\frac{1}{a}\left(1-e^{-a t}\right)$	$\frac{1}{s(s+a)}$
16	$\frac{1}{a^{2}}\left(a t-1+e^{-a t}\right)$	$\frac{1}{s^{2}(s+a)}$
17	$\frac{1}{b-a}\left(e^{-a t}-e^{-b t}\right)$	$\frac{1}{(s+b)(s+a)}$
18	$e^{-a t} \sin \omega t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$
19	$e^{-a t} \cos \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$

APPENDIX 3: FORMULAS

1	$T_{s} \approx 4 T=\frac{4}{\xi \omega_{n}}$, if 2% of final value
2	$\% O S=\frac{c_{\text {max }}-c_{\text {final }}}{c_{\text {final }}} \times 100$
3	$\xi=\frac{-\ln (\% O S / 100)}{\sqrt{\pi^{2}+\ln ^{2}(\% O S / 100)}}$, if 5% of final value
3	$T_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\xi^{2}}}$
4	

