CONFIDENTIAL

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	:	FAD 30203
SUBJECT TITLE	:	CONTROL ENGINEERING
LEVEL	:	DIPLOMA
TIME / DURATION	:	(3 HOURS)
DATE	:	

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer TWO (2) questions only.
- 6. Answer all questions in English.
- 7. Semi-log paper and formula is appended

SECTION A (Total: 60 marks)

INSTRUCTION: Answer all the questions. Please use the answer booklet provided.

Question 1

(a) A Segway® Personal Transporter (PT) is a two wheeled vehicle in which human act as operator stands vertically on a platform. As the driver leans left, right, forward and backward, a set of sensitive gyroscopic sensors sense the desired input. These signals are fed to a computer that amplifies them and commands motors to propel the vehicle in the desired direction. Determine whether the system is an open-loop or a closed-loop control system and provide your justification.

(4 marks)

Figure 1: The Segway® Personal Transporter (PT)

(b) Consider the human is trying to reach for a book in the table. Determine the reference input and the controller of the task.

(2 marks)

(4 marks)

(4 marks)

- (c) Describe how does an open-loop system differs from closed-loop systems. List one
 (1) advantage of each system.
- (d) Find the forward Laplace for:

i.
$$5\frac{d^2 y(t)}{dt^2} + 8\frac{dy(t)}{dt} + 3y(t)$$
.
ii. $\frac{t^{6-1}e^{-2t}}{6-1!}$.

(e) Find the inverse Laplace for
$$\frac{8}{s(s^2+5s+6)}$$
 (6 marks)

Question 2

(a) Prove that for a positive-feedback closed-loop control system, the system transfer function is $TF = \frac{G}{1-GH}$, where **G** is forward gain and **H** is feedback gain.

(5 marks)

(b) Simplify the block diagram of a system shown in **Figure 2** to a single block representing the transfer function, $TF(s) = \frac{C(s)}{R(s)}$.

(12 marks)

Figure 2: Block Diagram

(b) Obtain the transfer function, *TF(s)* if G1(s)=1, G2(s)=2, G3(s)=4, G4(s)=2, G5(s)=1, G6(s)=2 and G7(s)=1.

(3 marks)

Question 3

- (a) Define mathematical modeling.
- (b) Determine the transfer function of the circuit in **Figure 3** for output voltage Vo(s), versus input voltage Vi(s). Output voltage is measured across the R2 and C.

(10 marks)

(2 marks)

Figure 3: Series RC circuit

(c) A basic mechanical system consist of three passive and linear components; mass, spring and viscous damper. Derive the **mathematical model** that describe the relationship between force f(t) and displacement x(t) for each components.

(6 marks)

(d) Provide an example of mechanical system that you know.

(2 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only. Please use the answer booklet provided.

Question 4

(a) Find the transfer function for the unit step response of the first order response below.

(10 marks)

Figure 4: First Order response

(b) Given that the settling times (*Ts*) of the second order response below is 3.54s and find the transfer function of the system.

(10 marks)

Question 5

(a) Define and give an application of PID controller.

 (4 marks)
 (b) Find the transfer function of PID controller.
 (5 marks)
 (c) Based on Figure 6 find the transfer function when PID controller connected in series with the plant module.
 (5 marks)
 (d) Give the characteristic of P, I and D controller.
 (6 marks)

Question 6

(a) Draw a Bode plot of the unity feedback system shown in **Figure 7**.

(14 marks)

Figure 7: The unity feedback system

Where $G(s) = \frac{60}{s(s+5)(s+12)}$

JANUARY 2014

CONFIDENTIAL

(b) From the Bode plot, determine the following:

i.	Gain margin, <i>GM</i>	(1 mark)
ii.	Phase margin, PM	(1 mark)
iii.	Gain cross over frequency, $ arnotheta_{_{gco}} $	(1 mark)
iv.	Phase cross over frequency, $\omega_{_{pco}}$	(1 mark)

(c) Give your comment on the stability. (2 marks)

END OF QUESTION

APPENDIX 1: BLOCK DIAGRAMS

1. Cascading Blocks:

2. Blocks in parallel: Forward Loop

3. Moving the summing ahead of the block:

4. Moving the summing beyond the block:

5. Moving the takeoff point ahead of a block:

6. Moving the takeoff point beyond a block:

	Time domain f(t)	Laplace domain F(s)
1	Unit impulse $\delta(t)$	1
2	Unit Step Function $u(t)$	$\frac{1}{s}$
3	Constant K	<u></u>
4	t	$\frac{1}{s^2}$
5	t^2	$\frac{2!}{s^3}$
6	$\frac{t^2}{2!}$	$ \frac{s}{\frac{1}{s^2}} $ $ \frac{2!}{s^3} $ $ \frac{1}{s^3} $
7	t^n	$\frac{n!}{s^{n+1}}$
8	$\frac{t^{n-1}}{n!}$	$\frac{1}{s^n}$
9	e^{-at}	$\frac{1}{s+a}$
10	$t \cdot e^{-at}$	1
11	$\frac{t^2 e^{-at}}{2!}$ $t^{n-1} e^{-at}$	$\frac{1}{(s+a)^2}$ $\frac{1}{(s+a)^3}$
12	$\frac{t^{n-1}e^{-at}}{n-1!}$	$\frac{1}{(s+a)^n}$
13	sin <i>ot</i>	$\frac{\omega}{s^2 + \omega^2}$
14	cos <i>@t</i>	$\frac{s}{s^2 + \omega^2}$
15	$\frac{1}{a} \left(1 - e^{-at} \right)$	$\frac{1}{s(s+a)}$
16	$\frac{1}{a^2} \left(at - 1 + e^{-at} \right)$	$\frac{1}{s^2(s+a)}$
17	$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$	$\frac{1}{(s+b)(s+a)}$
18	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
19	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

APPENDIX 2: TABLE OF LAPLACE TRANSFORMS

APPENDIX 3: FORMULAS

1	$T_s \approx 4T = \frac{4}{\xi \omega_n}$, if 2% of final value
	$T_s \approx 3T = \frac{3}{\xi \omega_n}$, if 5% of final value
2	$\%OS = \frac{c_{\max} - c_{final}}{c_{final}} \ge 100$
3	$\xi = \frac{-\ln(\% OS/100)}{\sqrt{\pi^2 + \ln^2(\% OS/100)}}$
4	$T_p = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}}$