UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	$:$ FLD 10103
SUBJECT TITLE	$:$ ANALOG ELECTRONICS
LEVEL	$:$ DIPLOMA
TIME / DURATION	$:$
DATE	

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
6. Answer all questions in English.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Draw an ideal and practical pn-junction diode characteristic curve.
(b) By assuming silicon diode, determine the value of I_{T} for the circuit shown in Figure 1 using the:
(i) Ideal diode model.
(ii) Practical diode model.

Figure 1
(c) List out two (2) applications for a zener diode.
(d) The IN757A zener diode has a dc power dissipation rating of 500 mW and a nominal zener voltage of 6.8 V . Determine the value of I_{zm} for the device.
(3 marks)
(e) Determine the alpha rating for the transistor shown in Figure 2. Then determine the value of I_{C} using both the alpha and the beta ratings of the transistor.
(5 marks)

Figure 2

Question 2

(a) Give 2 advantages of bridge rectifier compared to other rectifier circuits.
(b) A positive full-wave bridge rectifier is fed by a $20 \mathrm{~V}_{\mathrm{ac}}$ transformer with the load of $10 \mathrm{k} \Omega$. (Diodes are silicon type).
(i) Draw the positive full-wave bridge rectifier circuit and explain the operation of the circuit.
(ii) Sketch the waveform of transformer's secondary voltage, V_{2} and the load voltage, V .
(4 marks)
(iii) Calculate the value of peak load voltage ($\mathrm{V}_{\text {Lp }}$), average load voltage ($\mathrm{V}_{\text {Lavg }}$) and average load current ($L_{\text {Lavg }}$).

Question 3

Figure 3 shows a clipper circuit using two ideal silicon zener diodes with its respected output voltage, $\mathrm{V}_{\text {out. }}$. For both question (a) and (b), please refer to data sheet attached in Appendix and determine:

Figure 3
(a) The device type number of zener diode D_{1} and D_{2}. Support your answer with calculation.
(b) Each of the following parameters value and unit for answer in (a).
(i) maximum DC Power Dissipation (\mathbf{P}_{D})
(ii) nominal Zener Voltage $\left(\mathbf{V}_{\mathrm{z}}\right)$ (2 marks)
(iii) zener Knee Current ($\mathbf{I z K}$)
(iv) maximum Zener Impedance at Test current $\left(\mathbf{Z}_{\mathbf{z}}\right)$
(2 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.

Question 4

By considering ideal zener diode, determine the minimum and maximum input voltages that can be regulated by the zener diode in Figure 4 below.
(20 marks)

1N968A Parameters:
$\mathrm{V}_{\mathrm{Z}}=20 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{ZT}}=20 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{ZK}}=0.2 \mathrm{~mA}$
$\mathrm{P}_{\mathrm{D}}=1 \mathrm{~W}$ at $\mathrm{T}_{\mathrm{L}}=50^{\circ} \mathrm{C}$

Figure 4

Question 5

(a) Draw I-V characteristic curve of transistor and indicate on the curve all operating regions for transistor.
(b) A high sensor water module in Figure 5 below uses a silicon based bipolar junction transistor to make a relay $12 \mathrm{~V}_{\mathrm{dc}}$ energize and function. The operation of the circuit is as follows: When sensor detects water, switch is closed and the transistor will 'ON'. The relay then will be energized. Given $\beta=60$, determine $I_{B}, I_{C}, I_{E}, V_{B E}, V_{C E}$ and $V_{C B}$.

Figure 5

Question 6

(a) (i) Define operational amplifier (op-amp).
(ii) List out the three (3) factors that affect the output of the op-amp.
(ii) List out three (3) types of op-amp's IC packaging.
(b) Refer to Figure 6 and answer the following questions.
(i) Identify the amplifier.
(ii) Determine the closed-loop gain, A_{CL}.
(iii) Calculate the output voltage, $\mathrm{V}_{\text {out }}$.
(iv) Sketch the input voltage, $\mathrm{V}_{\text {in }}$ and output voltage, $\mathrm{V}_{\text {out }}$ on the same curve.

Figure 6

END OF QUESTION PAPER

APPENDIX

FAIRCHILD

1N4728A - 1N4764A

Zeners

Absolute Maximum Ratings * $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Value	Units
P_{D}	Power Dissipation $@ \mathrm{TL} \leq 50^{\circ} \mathrm{C}$, Lead Length $=3 / 8^{\prime \prime}$	1.0	W
	Derate above $50^{\circ} \mathrm{C}$	6.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature Range	-65 to +200	${ }^{\circ} \mathrm{C}$

*These ratings are limiting values above which the serviceability of the diode may be impaired.
Electrical Characteristics $T_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Device	$\mathbf{V}_{\mathbf{Z}}(\mathbf{V}) @ \mathbf{I}_{\mathbf{Z} \text { (Note 1) }}$			$\begin{aligned} & \text { Test Current } \\ & I_{Z}(\mathrm{~mA}) \end{aligned}$	Max. Zener Impedance			Leakage Current	
	Min.	Typ.	Max.		$\underset{(\Omega)}{Z_{Z} @ I_{Z}}$	$\begin{aligned} & \mathbf{Z}_{\mathrm{ZK}} @ \\ & \mathrm{I}_{\mathrm{ZK}}(\Omega) \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{ZK}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{R}} \\ (\mu \mathrm{~A}) \end{gathered}$	V_{R} (V)
1N4728A	3.315	3.3	3.465	76	10	400	1	100	1
1N4729A	3.42	3.6	3.78	69	10	400	1	100	1
1N4730A	3.705	3.9	4.095	64	9	400	1	50	,
1N4731A	4.085	4.3	4.515	58	9	400	1	10	1
1N4732A	4.465	4.7	4.935	53	8	500	1	10	1
1N4733A	4.845	5.1	5.355	49	7	550	1	10	1
1N4734A	5.32	5.6	5.88	45	5	600	1	10	2
1N4735A	5.89	6.2	6.51	41	2	700	1	10	3
1N4736A	6.46	6.8	7.14	37	3.5	700	1	10	4
1N4737A	7.125	7.5	7.875	34	4	700	0.5	10	5
1N4738A	7.79	8.2	8.61	31	4.5	700	0.5	10	6
1N4739A	8.645	9.1	9.555	28	5	700	0.5	10	7
1N4740A	9.5	10	10.5	25	7	700	0.25	10	7.6
1N4741A	10.45	11	11.55	23	8	700	0.25	5	8.4
1N4742A	11.4	12	12.6	21	9	700	0.25	5	9.1
1N4743A	12.35	13	13.65	19	10	700	0.25	5	9.9
1N4744A	14.25	15	15.75	17	14	700	0.25	5	11.4
1N4745A	15.2	16	16.8	15.5	16	700	0.25	5	12.2
1N4746A	17.1	18	18.9	14	20	750	0.25	5	13.7
1N4747A	19	20	21	12.5	22	750	0.25	5	15.2

