SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE	: FLI	D 10103
SUBJECT TITLE	: AN	ALOG ELECTRONICS
LEVEL	: DIF	LOMA
TIME / DURATION	: 2.5	HOURS
DATE	:	

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 7 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.

Question 1

(a) Draw an ideal and practical pn-junction diode characteristic curve.

(4 marks)

(6 marks)

- (b) By assuming silicon diode, determine the value of I_T for the circuit shown in **Figure 1** using the:
 - (i) Ideal diode model.
 - (ii) Practical diode model.

- Figure 1
- (c) List out two (2) applications for a zener diode.

(2 marks)

(d) The IN757A zener diode has a dc power dissipation rating of 500mW and a nominal zener voltage of 6.8V. Determine the value of I_{ZM} for the device.

(3 marks)

(e) Determine the alpha rating for the transistor shown in **Figure 2**. Then determine the value of I_c using both the alpha and the beta ratings of the transistor.

(5 marks)

Figure 2

Question 2

(a) Give 2 advantages of bridge rectifier compared to other rectifier circuits.

(2 marks)

- (b) A positive full-wave bridge rectifier is fed by a $20V_{ac}$ transformer with the load of $10k\Omega$. (Diodes are silicon type).
 - (i) Draw the positive full-wave bridge rectifier circuit and explain the operation of the circuit.

(6 marks)

(ii) Sketch the waveform of transformer's secondary voltage, V_2 and the load voltage, V_L .

(4 marks)

(iii) Calculate the value of peak load voltage (V_{Lp}), average load voltage (V_{Lavg}) and average load current (I_{Lavg}).

(8 marks)

Question 3

Figure 3 shows a clipper circuit using two ideal silicon zener diodes with its respected output voltage, V_{OUT} . For both question (a) and (b), please refer to data sheet attached in **Appendix** and determine:

Figure 3

(a) The device type number of zener diode D_1 and D_2 . Support your answer with calculation.

(12 marks)

(b) Each of the following parameters value and unit for answer in (a).

(i)	maximum DC Power Dissipation (\mathbf{P}_{D})	(2 marks)
(ii)	nominal Zener Voltage (Vz)	(2 marks)
(iii)	zener Knee Current (I _{zĸ})	(2 marks)
(iv)	maximum Zener Impedance at Test current (Z_z)	(2 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.

Question 4

By considering ideal zener diode, determine the minimum and maximum input voltages that can be regulated by the zener diode in **Figure 4** below.

(20 marks)

1N968A Parameters: $V_Z = 20V$ at $I_{ZT} = 20MA$ $I_{ZK} = 0.2mA$ $P_D = 1W$ at $T_L = 50^{\circ}C$

Figure 4

Question 5

(a) Draw I-V characteristic curve of transistor and indicate on the curve all operating regions for transistor.

(5 marks)

(b) A high sensor water module in **Figure 5** below uses a silicon based bipolar junction transistor to make a relay $12V_{dc}$ energize and function. The operation of the circuit is as follows: When sensor detects water, switch is closed and the transistor will 'ON'. The relay then will be energized. Given $\beta = 60$, determine I_B , I_C , I_E , V_{BE} , V_{CE} and V_{CB} .

(15 marks)

Figure 5

Question 6

(a)	(i)	Define operational amplifier (op-amp).	(3 marks)
	(ii)	List out the three (3) factors that affect the output of the op-amp.	
			(3 marks)
	(ii)	List out three (3) types of op-amp's IC packaging.	(3 marks)
(b)	Refer	to Figure 6 and answer the following questions.	
	(i)	Identify the amplifier.	(2 mark)
	(ii)	Determine the closed-loop gain, A _{CL} .	(3 marks)
	(iii)	Calculate the output voltage, Vout.	(2 marks)

(iv) Sketch the input voltage, V_{in} and output voltage, V_{out} on the same curve. (4 marks)

Figure 6

END OF QUESTION PAPER

APPENDIX

IN472 Ceners	HILD DUCTOR* 8A - 1N4764A		
Absolute	DO-41 Glass case COLOR BAND DENOTES CATHODE Maximum Ratings * T _a = 25°C unless otherwise noted		
-nooninie	_	Value	Units
Symbol	Parameter	Value	Units
	Parameter Power Dissipation @ TL ≤ 50°C, Lead Length = 3/8"	1.0	Units W
Symbol	Power Dissipation		

Device	V _Z (V) @ I _Z (Note 1)			To at Current	Max. Zener Impedance			Leakage Current	
	Min.	Тур.	Max.	- Test Current I _Z (mA)	Zz@Iz (Ω)	Z _{ZK} @ I _{ZK} (Ω)	I _{ZK} (mA)	Ι _R (μΑ)	V _R (V)
1N4728A	3.315	3.3	3.465	76	10	400	1	100	1
1N4729A	3.42	3.6	3.78	69	10	400	1	100	1
1N4730A	3.705	3.9	4.095	64	9	400	1	50	1
1N4731A	4.085	4.3	4.515	58	9	400	1	10	1
1N4732A	4.465	4.7	4.935	53	8	500	1	10	1
1N4733A	4.845	5.1	5.355	49	7	550	1	10	1
1N4734A	5.32	5.6	5.88	45	5	600	1	10	2
1N4735A	5.89	6.2	6.51	41	2	700	1	10	3
1N4736A	6.46	6.8	7.14	37	3.5	700	1	10	4
1N4737A	7.125	7.5	7.875	34	4	700	0.5	10	5
1N4738A	7.79	8.2	8.61	31	4.5	700	0.5	10	6
1N4739A	8.645	9.1	9.555	28	5	700	0.5	10	7
1N4740A	9.5	10	10.5	25	7	700	0.25	10	7.6
1N4741A	10.45	11	11.55	23	8	700	0.25	5	8.4
1N4742A	11.4	12	12.6	21	9	700	0.25	5	9.1
1N4743A	12.35	13	13.65	19	10	700	0.25	5	9.9
1N4744A	14.25	15	15.75	17	14	700	0.25	5	11.4
1N4745A	15.2	16	16.8	15.5	16	700	0.25	5	12.2
1N4746A	17.1	18	18.9	14	20	750	0.25	5	13.7
1N4747A	19	20	21	12.5	22	750	0.25	5	15.2