UNIVERSITI KUALA LUMPUR

Malaysia France Institute

FINAL EXAMINATION
 JANUARY 2014 SESSION

```
SUBJECT CODE
SUBJECT TITLE : POWER ELECTRONICS \& DRIVES
LEVEL : BACHELOR
DURATION : 3 HOURS
DATE / TIME :
```

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) question only.
6. Answer all questions in English.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Give 3 (three) types of power conversion and each converter's name. (Hint: AC-AC, cycloconverter)
(6 marks)
(b) Provide 1(one) condition for a thyristor to switch ON and 1(one) condition to Turn OFF.
(2 marks)
(c) Briefly explain the existence of the extinction angle and the negative spike in the half wave rectifier with RL load.
(4 marks)
(d) A domestic load equivalent to 22Ω is to be supplied with adequate DC power. The DC power shall be converted using a type of rectifier which input is sourced from Malaysian utility system ($240 \mathrm{Vrms}, 50 \mathrm{~Hz}$). Determine:
i. The DC Power, $P_{D C}$, and the AC power, $P_{A C}$, obtained using a half wave rectifier.
ii. The DC Power, $P_{D C}$, and the AC power, $P_{A C}$, obtained using a full wave rectifier.
(4 marks)
iii. Compare/calculate the efficiencies of both systems. State which rectifier type is better.
(Hint : HALF WAVE : $V_{D C}=\frac{V_{M}}{\pi} ; V_{R M S}=\frac{V_{M}}{2}$ and
FULL WAVE BRIDGE : $\left.: V_{D C}=\frac{2 \cdot V_{M}}{\pi} ; V_{R M S}=\frac{V_{M}}{\sqrt{2}}\right)$

Question 2

(a) Name 3 types of DC-DC Converters.
(b) In a certain portable walkie-talkie project, the engineer is provided with a portable battery of 2 AH 7 V (can be operated from 5 V to 9 V). The walkie talkie has circuits which need a supply of 3.3 V .
(i) Draw the circuit of suitable DC-DC converter type.
(ii) Produce the equivalent schematic when the main transistor switches ON
(iii) Produce the equivalent schematic when the main transistor switches OFF.
(6 marks)
(c) A single-phase half-wave thyristor converter is supplied with Malaysian utility supply (240 Vrms 50 Hz). The firing angle α is set to 30°. The converter supplies a 270Ω load. Perform the analysis as follows :
(i) Draw the waveforms of source voltage and output voltage.
(ii) Calculate the average output voltage ($\mathrm{V}_{\text {Out(DC) }}$) and the DC power obtained.

Given $V_{D C}=\frac{V_{M}}{2 \pi} *(1+\cos \alpha)$.
(iii) Calculate the RMS output voltage ($\mathrm{V}_{\mathrm{OUT}(\mathrm{DC})}$) and the AC power obtained. Given $V_{R M S}=\frac{V_{M}}{2} \sqrt{1-\frac{\alpha}{\pi}+\frac{\sin 2 \alpha}{2 \pi}}$.
(4 marks)

SECTION B (Total: 60 marks)

INSTRUCTION: Answer TWO (2) questions only.

Please use the answer booklet provided.

Question 3

(a) Figure 1 shows circuit of a three-phase bridge rectifier with purely resistive load. Calculate the peak value of the phase voltage given the rectifier delivers an output voltage of $\mathrm{V}_{\mathrm{dc}}=280.7 \mathrm{~V}$.

Figure 1
(b) A DC chopper is used to charge a 240 V battery from 600 V DC source. The average battery current is 20A with a peak-to-peak ripple of 2 A . Calculate the duty cycle, switch ON time interval and the inductor inductance of the DC chopper given the chopper frequency is 200 Hz .
(c) A 200 V DC source is connected to a 4-quadrant switching converter operating at a carrier frequency of 8 kHz . It is required to generate a sinusoidal voltage with an effective value of 240 V at a frequency of 60 Hz and a phase angle of 35° lagging. Calculate the value of the amplitude modulation ratio, the frequency modulation ratio, and derive an expression for the duty cycle.
(d) A rectifier shown in Figure 2 has load of $R=15 \Omega$ and, $V s=220 \sin 314 t$ and unity transformer ratio. If it is required to obtain an average output voltage of 70% of the maximum possible output voltage, calculate:
i. The delay angle
ii. The rectification efficiency
iii. The ripple factor

Figure 2
(12 marks)

Question 4

(a) A free-wheeling diode circuit shown in Figure 3 has an AC source of $V_{m}=100 \mathrm{~V}$ 60 Hz with resistive load of 2Ω and inductive load of 25 mH . Determine:
i. The average output voltage and output current
ii. The AC voltage amplitudes
iii. The Fourier impedance
iv. Power absorbed by the resistive load

Figure 3
(15 marks)
(b) A general form of the Fourier series is given as

$$
v_{o}(\omega t)=V_{o}+\sum_{n=1,2, \ldots}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right)
$$

Express the output voltage waveform of the square-wave inverter shown in
Figure 4 as a Fourier series.

Figure 4

Question 5

(a) A single-phase bridge rectifier shown in Figure 5 has an AC source of $\mathrm{V}_{\mathrm{m}}=240 \mathrm{~V}$ at 60 Hz and $R-L$ load with $R=10 \Omega$ and $L=10 \mathrm{mH}$. Determine the average current in the load, the first two higher order harmonics of the load current and the power absorbed by the load.

Figure 5
(12 marks)
(b) A three-phase half wave rectifier shown in Figure 6 is operated from 460 V 50 Hz supply at secondary side and the load resistance is $R=20 \Omega$. If the source inductance is negligible, determine:
i. The rectification efficiency
ii. The form factor
iii. The ripple factor

Figure 6
(c) The switch of a DC chopper shown in Figure 7 opens and closes at a frequency of 15 Hz and remains closed for 4 ms per cycle. A DC ammeter connected in series with the load indicates a current of 60 A . If a DC ammeter is connected in series with the source, what current will it indicate?

Figure 7

END OF QUESTION PAPER

APPENDIX 1 : IMPORTANT FORMULA

FOURIER SERIES

$v(\theta)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)$
$a_{0}=\frac{1}{\mathrm{~T}} \cdot \int_{\mathrm{O}_{\mathrm{T}}}^{\mathrm{T}} \mathrm{v}(\theta) \mathrm{d}(\theta)$
$a_{n}=\frac{2}{\mathrm{~T}} \cdot \int_{\mathrm{D}_{\mathrm{T}}} \mathrm{v}(\theta) \cdot \cos n \theta \mathrm{~d}(\theta)$
$b_{n}=\frac{2}{\mathrm{~T}} \cdot \int_{0} \mathrm{v}(\theta) \cdot \sin \mathrm{n} \theta \mathrm{d}(\theta)$
Diode Shockley Equation
$I_{D}=I_{S} \cdot\left(e^{V_{D} /\left(n \cdot V_{T}\right)}-1\right)$

Bridge Rectifier

$V_{d c}=\frac{1}{\pi} \int_{0}^{\pi} V_{m} \sin \omega t d \omega t=\frac{2 V_{m}}{\pi}$
$V_{r m s}=\left[\frac{1}{\pi} \int_{0}^{\pi}\left(V_{m} \sin \omega t\right)^{2} d \omega t\right]^{1 / 2}=\frac{V_{m}}{\sqrt{2}}$
$\eta=\frac{P_{d c}}{P_{a c}}=\frac{V_{d c} I_{d c}}{V_{r m s} I_{r m s}}$
$F F=\frac{V_{r m s}}{V_{d c}}$
$R F=\frac{\sqrt{V_{r m s}^{2}-V_{d c}^{2}}}{V_{d c}}=\sqrt{\frac{V_{r m s}^{2}}{V_{d c}^{2}}-1}=\sqrt{F F^{2}-1}$

Half Wave Controlled Rectifier

$$
\begin{aligned}
& V_{(o) D C}=\frac{V_{M}}{2 \pi}[1+\cos \alpha] \\
& V_{o, r m s}=\frac{V_{m}}{2} \sqrt{1-\frac{\alpha}{\pi}+\frac{\sin (2 \alpha)}{2 \pi}}
\end{aligned}
$$

SPECIAL INTEGRATION RESULTS

Integration Of Trigonometry
$\int \sin a x d x=-\frac{1}{a} \cos a x$
$\int \sin ^{2} n x d x=\frac{x}{2}-\frac{\sin 2 n x}{4 n}$
$\int \cos ^{2} n x d x=\frac{x}{2}+\frac{\sin 2 n x}{4 n}$
$\int \cos a x d x=\frac{1}{a} \sin a x$
$\int \cos a x \sin b x d x=\frac{\cos [(a-b) x]}{2(a-b)}-\frac{\cos [(a+b) x]}{2(a+b)}, a \neq b$
$\int \cos x \sin x d x=-\frac{1}{4} \cos 2 x$.
$\int \sin m x * \sin n x d x=\frac{\sin (m-n) x}{2(m-n)}-\frac{\sin (m+n) x}{2(m+n)}(m \neq n)$
$\int \cos m x * \cos n x d x=\frac{\sin (m-n) x}{2(m-n)}+\frac{\sin (m+n) x}{2(m+n)}(m \neq n)$
$\int_{0}^{\pi} \cos (\theta) \cos (n \theta) d \theta=\left\{\begin{array}{cc}0 & n>1, n=2,3,4,5,6,7 \ldots \\ \pi / 2 & n=1\end{array}\right.$
$\int_{0}^{\pi} \sin (\theta) \sin (n \theta) d \theta=\left\{\begin{array}{cc}0 & n>1, n=2,3,4,5,6,7 \ldots \\ \pi / 2 & n=1\end{array}\right.$
$\int_{0}^{\pi} \sin (\theta) \cos (n \theta) d \theta=\left\{\begin{array}{cc}\frac{2}{1-n^{2}} & n>1, n=2,4,6,8 \ldots \\ 0 & n>1, n=3,5,7,9 \ldots \\ 0 & n=1\end{array}\right.$

APPENDIX 1 : IMPORTANT FORMULAS (cont'd)

COMMONLY USED FUNCTIONS

-A	$90 \pm \mathrm{A}$	$180 \pm \mathrm{A}$	$270 \pm \mathrm{A}$	$360 \mathrm{k} \pm \mathrm{A}$
$-\sin \mathrm{A}$	$\cos \mathrm{A}$	$\mp \sin \mathrm{A}$	$-\cos \mathrm{A}$	$\pm \sin \mathrm{A}$
$\cos \mathrm{A}$	$\mp \sin \mathrm{A}$	$-\cos \mathrm{A}$	$\pm \sin \mathrm{A}$	$\cos \mathrm{A}$

$$
\begin{gathered}
\sin (\mathrm{A} \pm \mathrm{B})=\sin \mathrm{A} \cos \mathrm{~B} \pm \cos \mathrm{A} \sin \mathrm{~B} \\
\cos (\mathrm{~A} \pm \mathrm{B})=\cos \mathrm{A} \cos \mathrm{~B} \mp \sin \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A} \\
\cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1 \\
\sin \mathrm{~A}+\sin \mathrm{B}=2 \sin \frac{\mathrm{~A}+\mathrm{B}}{2} \cos \frac{\mathrm{~A}-\mathrm{B}}{2} \\
\sin \mathrm{~A}-\sin \mathrm{B}=2 \cos \frac{\mathrm{~A}+\mathrm{B}}{2} \sin \frac{\mathrm{~A}-\mathrm{B}}{2} \\
\cos \mathrm{~A}+\cos \mathrm{B}=2 \cos \frac{\mathrm{~A}+\mathrm{B}}{2} \cos \frac{\mathrm{~A}-\mathrm{B}}{2} \\
\cos \mathrm{~A}-\cos \mathrm{B}=2 \sin \frac{\mathrm{~A}+\mathrm{B}}{2} \sin \frac{\mathrm{~B}-\mathrm{A}}{2} \\
\sin \mathrm{~A} \sin \mathrm{~B}=\frac{1}{2}[\cos (\mathrm{~A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})] \\
\cos \mathrm{A} \cos \mathrm{~B}=\frac{1}{2}[\cos (\mathrm{~A}-\mathrm{B})+\cos (\mathrm{A}+\mathrm{B})] \\
\sin \mathrm{A} \cos \mathrm{~B}=\frac{1}{2}[\sin (\mathrm{~A}-\mathrm{B})+\sin (\mathrm{A}+\mathrm{B})]
\end{gathered}
$$

