Document No : UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

JANUARY 2014 SESSION

SUBJECT CODE : FLB12013 / FLB12023 / FLB10102 / FLB20102

SUBJECT TITLE : ANALOG ELECTRONICS / ELECTRONIC DEVICES /

OP-AMP AND NON-LINEAR CIRCUIT

LEVEL : BACHELOR

TIME / DURATION : 2.5 HOURS

DATE :

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
- 6. Answer all questions in English.
- 7. Do not open the question paper until instructed to do so

THERE ARE 5 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

(a) Explain the two element types that are used for doping (4 marks)

(b) Explain the formation of pn-junction (6 marks)

Question 2

For the circuit in **Figure 1** below, determine:

Figure 1

(a) The current, I (6 marks)

(b) The output voltage, Vo (4 marks)

Question 3

For the network in Figure 2 below,

Figure 2

- (a) Determine *vo* and sketch the output waveform (6 marks)
- (b) Calculate the output voltage dc level, Vdc (3 marks)

Question 4

For the full-wave rectifier with ideal diodes given in Figure 3 below,

Figure 3

- (a) Determine *vo* and sketch the output waveform (8 marks)
- (b) Calculate the output voltage dc level, Vdc (3 marks)

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only.

Please use the answer booklet provided.

Question 5

For the network of Figure 4 below, determine:

Figure 4

- (a) VL, IL, IR and Iz if RL = 470 Ω . (10 marks)
- (b) The value of R_L that will establish maximum power conditions for theZener diode. (6 marks)
- (c) The minimum value of RL to ensure that the Zener diode is in the "on" state. (4 marks)

Question 6

- (a) Define 'transistor'. (2 marks)
- (b) State TWO (2) application of transistor in communication system and digital electronic. (4 marks)

(c) For the network given in Figure 5 below, determine:

Figure 5

(i) Ic	(3 marks)
(ii) VCE	(3 marks)
(iii) Rc	(4 marks)
(iv) RB	(4 marks)

Question 7

Referring to the circuit provided in Figure 6 below, calculate:

Figure 6

(1)	VCE	(4 marks)
(ii)	RE	(4 marks)
(iii)	Rв	(4 marks)
(iv)	Rc	(4 marks)
(v)	Vв	(4 marks)

Question 8

Show the connection of LM124 quad op-amp as a three-stage amplifier with gains of +10, - 18 and -27. Use a 270 k Ω feedback resistor for all three circuits. Calculate the output voltage, Vo if the input voltage, Vi = 150 μ V. (20 marks)

END OF QUESTION PAPER