## UNIVERSITI KUALA LUMPUR

Malaysia France Institute

## FINAL EXAMINATION

## JANUARY 2014 SESSION

| SUBJECT CODE | $:$ FLB12013 / FLB12023 / FLB10102 / FLB20102 |
| :--- | :--- |
| SUBJECT TITLE | $:$ ANALOG ELECTRONICS / ELECTRONIC DEVICES / |
|  | $:$ BACHELOR |
| OP-AMP AND NON-LINEAR CIRCUIT |  |

## INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
6. Answer all questions in English.
7. Do not open the question paper until instructed to do so

THERE ARE 5 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

## SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

## Question 1

(a) Explain the two element types that are used for doping
(b) Explain the formation of pn-junction

## Question 2

For the circuit in Figure 1 below, determine:


Figure 1
(a) The current, I
(6 marks)
(b) The output voltage, Vo

## Question 3

For the network in Figure 2 below,


Figure 2
(a) Determine vo and sketch the output waveform
(b) Calculate the output voltage dc level, Vdc

## Question 4

For the full-wave rectifier with ideal diodes given in Figure 3 below,


Figure 3
(a) Determine vo and sketch the output waveform
(b) Calculate the output voltage dc level, Vdc

## SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only.
Please use the answer booklet provided.

## Question 5

For the network of Figure 4 below, determine:


Figure 4
(a) VL, IL, IR and Iz if RL=470 $\Omega$.
(b) The value of RL that will establish maximum power conditions for the Zener diode.
(c) The minimum value of RL to ensure that the Zener diode is in the "on" state. (4 marks)

## Question 6

(a) Define 'transistor'.
(b) State TWO (2) application of transistor in communication system and digital electronic.
(c) For the network given in Figure 5 below, determine:


Figure 5
(i) Ic
(ii) Vce
(3 marks)
(iii) Rc
(4 marks)
(iv) $\mathrm{Rb}_{\mathrm{b}}$
(4 marks)

## Question 7

Referring to the circuit provided in Figure 6 below, calculate:


Figure 6

| (i) | VCE | (4 marks) |
| :--- | :--- | :--- |
| (ii) | RE | (4 marks) |
| (iii) | RB | (4 marks) |
| (iv) | RC | (4 marks) |
| (v) | $\mathrm{VB}_{\mathrm{B}}$ | (4 marks) |

## Question 8

Show the connection of LM124 quad op-amp as a three-stage amplifier with gains of +10 , 18 and -27. Use a $270 \mathrm{k} \Omega$ feedback resistor for all three circuits. Calculate the output voltage, $V o$ if the input voltage, $V i=150 \mu \mathrm{~V}$.

