CONFIDENTIAL

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2013 SESSION

SUBJECT CODE	:	FKD 22302
SUBJECT TITLE	:	MATHEMATICS FOR TECHNOLOGIST 3
LEVEL	:	DIPLOMA
TIME / DURATION	:	(2 HOURS)
DATE	:	

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) question only.
- 6. Answer all questions in English.
- 7. Graph paper and Calculus formula are appended.

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION (Total: 30 marks)

2

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.

Question 1

Given that $z = x^2y + 4y^3 + 3$. Determine the following:

a)
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial^2 z}{\partial y \partial x}$.
[2 marks]
b) $\frac{\partial z}{\partial y}$ and $\frac{\partial^2 z}{\partial x \partial y}$.
[2 marks]
c) Hence, show that $\frac{\partial^2 z}{\partial y \partial x} - \frac{\partial^2 z}{\partial x \partial y} = 0$.
[1 mark]

Question 2

a) Solve
$$\int_{-1}^{3} \int_{0}^{2} \int_{0}^{1} (x - y + 2z) dx dy dz$$
.

marks]

b) Evaluate
$$\int_{1}^{2} \int_{0}^{1} (e^{2\theta+r}) d\theta dr$$
.

[3

[4

Question 3

Given p = 2i + 4j and q = 3i + j.

a) Determine 3p-8q.

[2 marks]

b) Let point A(2,-4) and point B(7,6). If $\overrightarrow{AB} = hp + kq$ where h and k are constants, find the values of h and k.

[4 marks]

Question 4

TABLE 1 shows the number of different sizes of shoes sold by En. Razak within a certain week.

Shoes	4	5	6	7	8	9
size						
Frequency	5	6	9	3	4	2

```
TABLE 1
```

Determine the

a) Mean (leaving your answer to the nearest integer).

[1 mark]

b) Mode.

[1 mark]

c) Variance of the data set.

Hint:
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$
 [3]

marks]

d) Standard deviation of the data set.

[1 mark]

Question 5

A die is tossed 1 time.

a) Write down the sample space S and n(S) of the above experiment.

[2 marks]

b) Determine the probability that the number that appears is a prime number.

[1 mark]

c) The same die is tossed two times in a row. Determine the probability of getting number 6.

[3 marks]

SECTION B(Total: 20 marks)

INSTRUCTION: Answer TWO questions. Please use the answer booklet provided.

Question 1

Given points *A*(1,2,-1), *B*(-1,1,3) and *C*(-8,1,3).

a) Determine \overrightarrow{BA} , \overrightarrow{BC} and \overrightarrow{AC} in the form ai + bj + ck.

[3 marks]

- b) Calculate the cosine of the angle between \overrightarrow{BA} and \overrightarrow{BC} . (*Hint: use cosines law*) [4 marks]
- c) Prove that $(\overrightarrow{OA} \times \overrightarrow{OB}) \bullet \overrightarrow{OC} = (\overrightarrow{OB} \times \overrightarrow{OC}) \bullet \overrightarrow{OA}$

[3 marks]

Question 2

For Question 2(a), Attach APPENDIX 1 with the answer booklet provided.

A machine is set to produce bolts of nominal diameter 25.0mm. Measurement of the diameters of 60 bolts gave the following frequency distribution as shown in TABLE 2.

Diameter <i>x</i> (<i>mm</i>)	23.3-23.7	23.8-24.2	24.3-24.7	24.8-25.2	25.3-25.7	25.8-26.2	26.3-26.7
Frequency (f)	4	2	10	16	17	3	8

TABLE 2

a) Complete the cumulative frequency distribution table given in **APPENDIX 1**.

[4 marks]

b) Draw an **Ogive** to represent the data set.

[3 marks]

- c) Based on your graph, determine
 - i. the median of the diameter

[1 mark]

CONFIDENTIAL

ii. the percentage of bolts produce with diameters less than 24.65mm

[2 marks]

Question 3

Probability that it will rain on a particular morning was $\frac{1}{5}$. If it rains, the probability of Aliff taking a taxi to UniKL MFI is $\frac{5}{6}$. If it does not rain, Aliff will be going to UniKL MFI by riding his motorcycle. For 80% of total days Aliff will not take a taxi to the UniKL MFI, he came early. On a particular morning:

a) What is the probability that Aliff will not take a taxi to UniKL MFI?

[2 marks]

b) What is the probability that Aliff will not take a taxi to UniKL MFI and arrive late at

UniKL MFI?

[2 marks]

c) What is the probability that Aliff will not take a taxi and arrive early at UniKL MFI?

[2 marks]

d) What is the probability that Aliff will not ride his motorcycle to UniKL MFI?

[2 marks]

e) What is the probability that if not rain and Aliff arrive late at UniKL MF?

[2 marks]

END OF QUESTION

APPENDIX 1

Question 2(a) Section B INSTRUCTIONS: Fill in the blanks.

Name:

ID no:

Group:

Frequency Distribution Table

Diameter x(mm)	Class Boundary	Frequency(f)	Cumulative Frequency
23.3-23.7			
23.8-24.2			
24.3-24.7			
24.8-25.2			
25.3-25.7			
25.8-26.2			
26.3-26.7			

Table of Differentiation

Trigonometric Functions – GENERAL FORM
$\frac{d}{dx}(\sin f(x)) = \cos f(x) \times f'(x)$
$\frac{d}{dx}(\cos f(x)) = -\sin f(x) \times f'(x)$
$\frac{d}{dx}(\tan f(x)) = \sec^2 f(x) \times f'(x)$
$\frac{d}{dx}(\csc f(x)) = -\csc f(x)\cot f(x) \times f'(x)$
$\frac{d}{dx}(\sec f(x)) = \sec f(x)\tan f(x) \times f'(x)$
$\frac{d}{dx}(\cot f(x)) = -\csc^2 f(x) \times f'(x)$

Exponential Function – GENERAL FORM	
$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{f}(\mathrm{x})}\right) = \mathrm{e}^{\mathrm{f}(\mathrm{x})} \times \mathrm{f}'(\mathrm{x})$	

Logarithmic Function – GENERAL FORM
d = f'(x)
$\frac{d}{dx}(\ln f(x)) = \frac{f'(x)}{f(x)}$

Table of Integration

Trigonometric Functions – GENERAL FORM
Where : $f(x) = ax + b$
$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + C$
$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + C$
$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + C$

$$\int \sec f(x) \tan f(x) dx = \frac{\sec f(x)}{f'(x)} + C$$
$$\int \csc f(x) \cot f(x) dx = \frac{-\csc f(x)}{f'(x)} + C$$
$$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + C$$

Exponential Function – GENERAL FORM	
Where : $f(x) = ax + b$	
$\int e^{f(x)} dx = \frac{e^{f(x)}}{f'(x)} + C$	

Logarithmic Function – GENERAL FORM
Where : $f(x) = ax + b$
$\int \frac{1}{f(x)} dx = \frac{\ln f(x) }{f'(x)} + C$