UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION
 SEPTEMBER 2013 SESSION

SUBJECT CODE	$:$	FKD 22302
SUBJECT TITLE	$:$	MATHEMATICS FOR TECHNOLOGIST 3
LEVEL	$:$	DIPLOMA
TIME I DURATION	$:$	$(2$ HOURS)
DATE	$:$	

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) question only.
6. Answer all questions in English.
7. Graph paper and Calculus formula are appended.

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION (Total: 30 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

Given that $z=x^{2} y+4 y^{3}+3$. Determine the following:
a) $\frac{\partial z}{\partial x}$ and $\frac{\partial^{2} z}{\partial y \partial x}$.
b) $\frac{\partial z}{\partial y}$ and $\frac{\partial^{2} z}{\partial x \partial y}$.
c) Hence, show that $\frac{\partial^{2} z}{\partial y \partial x}-\frac{\partial^{2} z}{\partial x \partial y}=0$.

Question 2
a) Solve $\int_{-1}^{3} \int_{-1}^{2} \int_{0}^{1}(x-y+2 z) d x d y d z$.
marks]
b) Evaluate $\int_{1}^{2} \int_{0}^{1}\left(e^{2 \theta+r}\right) d \theta d r$.
marks]

Question 3

Given $\underset{\sim}{p}=2 \underset{\sim}{i}+4 \underset{\sim}{j}$ and $q=3 \underset{\sim}{i}+\underset{\sim}{j}$.
a) Determine $3 p-8 q$.
[2 marks]
b) Let point $A(2,-4)$ and point $B(7,6)$. If $\overrightarrow{A B}=h p+k q$ where h and k are constants, find the values of h and k.
[4 marks]

Question 4

TABLE 1 shows the number of different sizes of shoes sold by En. Razak within a certain week.

Shoes size	4	5	6	7	8	9
Frequency	5	6	9	3	4	2

TABLE 1
Determine the
a) Mean (leaving your answer to the nearest integer).
[1 mark]
b) Mode.
[1 mark]
c) Variance of the data set.

$$
\text { Hint: } s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

d) Standard deviation of the data set.

Question 5

A die is tossed 1 time.
a) Write down the sample space S and $n(S)$ of the above experiment.
[2 marks]
b) Determine the probability that the number that appears is a prime number.
[1 mark]
c) The same die is tossed two times in a row. Determine the probability of getting number 6.
[3 marks]

SECTION B(Total: 20 marks)

INSTRUCTION: Answer TWO questions.

Please use the answer booklet provided.

Question 1

Given points $A(1,2,-1), B(-1,1,3)$ and $C(-8,1,3)$.
a) Determine $\overrightarrow{B A}, \overrightarrow{B C}$ and $\overrightarrow{A C}$ in the form $a \underset{\sim}{i}+b j+c \underset{\sim}{c}$.
[3 marks]
b) Calculate the cosine of the angle between $\overrightarrow{B A}$ and $\overrightarrow{B C}$. (Hint: use cosines law)
[4 marks]
c) Prove that $(\overrightarrow{O A} \times \overrightarrow{O B}) \bullet \overrightarrow{O C}=(\overrightarrow{O B} \times \overrightarrow{O C}) \bullet \overrightarrow{O A}$

Question 2

For Question 2(a), Attach APPENDIX 1 with the answer booklet provided.

A machine is set to produce bolts of nominal diameter 25.0mm. Measurement of the diameters of 60 bolts gave the following frequency distribution as shown in TABLE 2.

Diameter $x(\mathrm{~mm})$	$23.3-23.7$	$23.8-24.2$	$24.3-24.7$	$24.8-25.2$	$25.3-25.7$	$25.8-26.2$	$26.3-26.7$
Frequency (f)	4	2	10	16	17	3	8

TABLE 2
a) Complete the cumulative frequency distribution table given in APPENDIX 1.
b) Draw an Ogive to represent the data set.
[3 marks]
c) Based on your graph, determine
i. the median of the diameter
[1 mark]
ii. the percentage of bolts produce with diameters less than 24.65 mm [2 marks]

Question 3

Probability that it will rain on a particular morning was $\frac{1}{5}$. If it rains, the probability of Aliff taking a taxi to UniKL MFI is $\frac{5}{6}$. If it does not rain, Aliff will be going to UniKL MFI by riding his motorcycle. For 80\% of total days Aliff will not take a taxi to the UniKL MFI, he came early.

On a particular morning:
a) What is the probability that Aliff will not take a taxi to UniKL MFI?
[2 marks]
b) What is the probability that Aliff will not take a taxi to UniKL MFI and arrive late at

UniKL MFI?
[2 marks]
c) What is the probability that Aliff will not take a taxi and arrive early at UniKL MFI?
[2 marks]
d) What is the probability that Aliff will not ride his motorcycle to UniKL MFI?
[2 marks]
e) What is the probability that if not rain and Aliff arrive late at UniKL MF?
[2 marks]

END OF QUESTION

APPENDIX 1

Question 2(a) Section B

INSTRUCTIONS: Fill in the blanks.

Name:
ID no:
Group:

Frequency Distribution Table

Diameter $x(\mathrm{~mm})$	Class Boundary	Frequency(f)	Cumulative Frequency
$23.3-23.7$			
$23.8-24.2$			
$24.3-24.7$			
$24.8-25.2$			
$25.3-25.7$			
$25.8-26.2$			
$26.3-26.7$			

Table of Differentiation

Trigonometric Functions - GENERAL FORM

$\frac{d}{d x}(\sin f(x))=\cos f(x) \times f^{\prime}(x)$
$\frac{d}{d x}(\cos f(x))=-\sin f(x) \times f^{\prime}(x)$
$\frac{d}{d x}(\tan f(x))=\sec ^{2} f(x) \times f^{\prime}(x)$
$\frac{d}{d x}(\csc f(x))=-\csc f(x) \cot f(x) \times f^{\prime}(x)$
$\frac{d}{d x}(\sec f(x))=\sec f(x) \tan f(x) \times f^{\prime}(x)$
$\frac{d}{d x}(\cot f(x))=-\csc ^{2} f(x) \times f^{\prime}(x)$

Exponential Function - GENERAL FORM

$$
\frac{d}{d x}\left(e^{f(x)}\right)=e^{f(x)} \times f^{\prime}(x)
$$

Logarithmic Function - GENERAL FORM

$$
\frac{\mathrm{d}}{\mathrm{dx}}(\ln \mathrm{f}(\mathrm{x}))=\frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}
$$

Table of Integration
Trigonometric Functions - GENERAL FORM

$$
\text { Where : } f(x)=a x+b
$$

$\int \cos f(x) d x=\frac{\sin f(x)}{f^{\prime}(x)}+C$
$\int \sin f(x) d x=\frac{-\cos f(x)}{f^{\prime}(x)}+C$
$\int \sec ^{2} f(x) d x=\frac{\tan f(x)}{f^{\prime}(x)}+C$

$$
\begin{aligned}
& \int \sec f(x) \tan f(x) d x=\frac{\sec f(x)}{f^{\prime}(x)}+C \\
& \int \csc f(x) \cot f(x) d x=\frac{-\csc f(x)}{f^{\prime}(x)}+C \\
& \int \csc ^{2} f(x) d x=\frac{-\cot f(x)}{f^{\prime}(x)}+C
\end{aligned}
$$

Exponential Function - GENERAL FORM

$$
\begin{aligned}
& \text { Where : } f(x)=a x+b \\
& \int e^{f(x)} d x=\frac{e^{f(x)}}{f^{\prime}(x)}+C
\end{aligned}
$$

Logarithmic Function - GENERAL FORM

$$
\begin{aligned}
& \text { Where : } f(x)=a x+b \\
& \int \frac{1}{\mathrm{f}(\mathrm{x})} \mathrm{dx}=\frac{\ln |\mathrm{f}(\mathrm{x})|}{\mathrm{f}^{\prime}(\mathrm{x})}+\mathrm{C}
\end{aligned}
$$

