

UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION
 SEPTEMBER 2013 SESSION

SUBJECT CODE	$:$ FLD 10202
SUBJECT TITLE	$:$ INSTRUMENTATION
LEVEL	$:$ DIPLOMA
TIME I DURATION	$:$
DATE	$:$

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
6. Answer all questions in English.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) State the three (3) major categories of error and give one example each.
(b) The following set of data is obtained from an instrument for a particular measurement.

Table 1

Data	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
Measured value	30.7	31.1	31.2	30.6	30.7	31.3

Determine:
(i) The arithmetic mean.
(2 marks)
(ii) The deviation of each value.
(6 marks)
(iii) The average deviation for the data.
(iv) The standard deviation for the data.

Question 2

(a) State four (4) possible measurements that can be performed by using C.R.O (Cathode Ray Oscilloscope).
(b) List out the four (4) groups of front control panel of a C.R.O.
(4 marks)
(c) State three (3) standard waveforms that can be delivered by a function generator.
(d) In an experiment, a function generator is used to generate a sinusoidal waveform of $1 \mathrm{kHz}, 14 \mathrm{~V}_{\text {pp. }}$. An oscilloscope (C.R.O) is used to display the waveform with the vertical scale set to $2 \mathrm{~V} /$ div and the horizontal scale set to $0.5 \mathrm{~ms} / \mathrm{div}$ respectively.
(i) Draw the waveform on the C.R.O screen shown in Figure 1.
(ii) Calculate the root-mean-square/effective value of the sinusoidal waveform, $V_{\text {RMS }}$.
(3 marks)

Answer for question 2(d)i.

(ATTACH THIS PAPER TOGETHER WITH THE ANSWER BOOKLET)

ID Number: \qquad

Figure 1

Question 3

(a) Figure 2 shows an Electrodynamometer. Based on Figure 2:

Figure 2
(i) Explain the basic principle of this instrument. (4 marks)
(ii) List out two (2) advantages and disadvantages of this instrument.
(b) The following questions refer to the instrument shown in Figure 3.
(i) Identify the instrument.
(ii) State one (1) difference between this instrument and moving iron types instrument.
(2 marks)
(iii) The instrument has the following data:

> Number of turns $=150$
> Width of the coil $=15 \mathrm{~mm}$
> Length of the coil $=31 \mathrm{~mm}$
> Flux density in the gap $=0.2 \mathrm{~Wb} / \mathrm{m}^{2}$

Calculate the deflecting torque when carrying a current of 30 mA and the deflection, if the control spring constant is $2 \times 10^{-6} \mathrm{Nm} /$ Degree.
(9 marks)

Figure 3

SECTION B (Total: 40 marks)

INSTRUCTION: Answer only TWO (2) questions.
Please use the answer booklet provided.

Question 4

(a) Design a multirange DC miliammeter with a basic meter having a resistance 70Ω and full scale deflection for the current of 3 mA . The required ranges are $0-10 \mathrm{~mA}, 0-25$ mA and 0-50 mA. Your design should provide the following:
(i) The value of shunt resistance for each range.
(8 marks)
(ii) The multirange miliammeter circuit.
(2 marks)
(b) A basic D'Arsonval movement meter with an internal resistance of 40Ω and full scale deflection current of 4 mA is to be used as a multirange voltmeter. Design the series string of multipliers to obtain the voltage ranges of $0-10 \mathrm{~V}, 0-100 \mathrm{~V}, 0-300 \mathrm{~V}$ and $0-500 \mathrm{~V}$.
(10 marks)

Question 5

(a) Meter A has a range of $0-100 \mathrm{~V}$ and multiplier resistance of $20 \mathrm{k} \Omega$. Meter B has a range $0-1000 \mathrm{~V}$ and a multiplier resistance of $200 \mathrm{k} \Omega$. Both meters have basic meter resistance of $2 \mathrm{k} \Omega$. Which meter is more sensitive?
(b) A D'Arsonval movement having an internal resistance of 100Ω and full scale current of $50 \mu \mathrm{~A}$ is used.
(i) Design an Aryton shunt to provide an ammeter with current ranges of $0-1 \mathrm{~mA}$, $0-10 \mathrm{~mA}$ and $0-100 \mathrm{~mA}$.
(13 marks)
(ii) Draw the circuit of the Aryton shunt ammeter in part b(i).

Question 6

(a) There are two (2) types of Bridge circuits; DC bridges and AC bridges. Briefly explain the differences between them.
(b) List out two (2) major applications of the Wheatstone's bridge.
(c) An unbalanced Wheatstone bridge is given in Figure 4. Calculate the current through the galvanometer.

Figure 4

END OF QUESTION PAPER

APPENDIX

FORMULA

1. $\quad V_{P}=(\sqrt{ } 2)\left(V_{R M S}\right)$
2. Arithmetic mean, $\bar{x}=\frac{x_{1}+x_{2}+\ldots \ldots \ldots+x_{n}}{n}$
3. Deviation, $d_{n}=x_{n}-\bar{x}$
4. Average Deviation, $D_{a v}=\frac{\left|d_{1}\right|+\ldots \ldots .+\left|d_{n}\right|}{n}$
5. Standard Deviation, $\sigma=\sqrt{\frac{d_{1}^{2}+d_{2}^{2}+\ldots \ldots . .+d_{n}^{2}}{n-1}}$
6. Precision $=1-\left|\frac{X_{n}-\overline{X_{n}}}{\overline{X_{n}}}\right|$
7. Deflecting torque, $\tau_{d}=B x A x N x I$
8. Deflecting torque, $\tau_{d}=K \theta$
9. Accuracy, $A=1-\left|\frac{Y_{n}-X_{n}}{Y_{n}}\right|$
10. Aryton Shunt Formula: $I_{s h} R_{s h}=I_{m} R_{m}$
11. Series Type Ohmmeter Formula: $R_{1}=R_{h}-\frac{I_{f s d} x R_{m} x R_{h}}{V}$ and

$$
R_{2}=\frac{I_{f s d} \times R_{m} \times R_{h}}{V-\left(I_{f s d} \times R_{h}\right)}
$$

