SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2013 SESSION

SUBJECT CODE	: FLD 10102
SUBJECT TITLE	: ELECTRONIC DEVICES
LEVEL	: DIPLOMA
TIME / DURATION	: 2.5 HOURS
DATE	:

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 8 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.

Question 1

(a) Define the doping process.

(2 marks)

(b) Describe the difference between n-type and p-type semiconductor materials.

(3 marks)

(c) Determine the current that will flow in the circuit of Figure 1 below which uses two oppositely-connected diodes in parallel. Both diodes are germanium type.

(5 marks)

Figure 1

(d) Draw I-V characteristic curve of transistor and indicate on the curve all operating regions for transistor.

(5 marks)

(e) Determine the alpha rating for the transistor as shown in **Figure 2**. Then determine the value of I_c using both the alpha rating and the beta rating of the transistor.

(5 marks)

Figure 2

(6 marks)

(4 marks)

(4 marks)

Question 2

(a) By referring to **Figure 3** below, answer the following questions:

- (i) Explain the operation of the above rectifier circuit.
- (ii) Sketch the waveform of V_2 and V_L .

- (iii) Calculate average load voltage (V_{Lavg}).
- (b) A primary voltage (V₁) of a transformer for a positive full-wave bridge rectifier is $150V_{RMS}$. The transformer used has a turns ratio N₁ : N₂ = 4 : 1 and a load resistance of $12k\Omega$. (Diodes are silicon type). Calculate:

(i) the peak load voltage (V_{Lp})
(2 marks)
(ii) the average load voltage (V_{Lavg})
(2 marks)

(2 marks)

Question 3

(a) By referring to the zener voltage regulator circuit as shown in Figure 4, calculate I_z.
 (Consider ideal zener diode).
 (16 marks)

(b) Determine whether zener diode IN968A used in circuit in **Figure 4** can maintain its regulation. Give your reason for your answer.

(4 marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.

Question 4

Determine the minimum and maximum input voltages that can be regulated by the zener diode in **Figure 5** below. (Consider ideal zener diode).

(20 marks)

IN4735 Parameters: $V_Z = 10V$ at $I_{ZT} = 40mA$ $I_{ZK} = 3mA$ $P_D = 1W$ at $T_L = 50^{\circ}C$

Figure 5

Question 5

(a) Draw symbols of PNP and NPN transistor. Show their terminals and currents with direction.

(4 marks)

(b) A high sensor water module in **Figure 6** below uses a bipolar junction transistor to make a relay $12V_{dc}$ energize and function. The operation of the circuit is as follows: When sensor detects water, switch is closed and the transistor will 'ON'. The relay then will be energized. Given $\beta = 100$, determine I_B, I_C, I_E, V_{BE}, V_{CE} and V_{CB}. (Transistor based on silicon)

(16 marks)

Figure 6

Question 6

(a) (i) An opamp's IC can be identified by 7 character ID code. Distinguish the code by referring to Table 1 below.

(4 marks)

Prefix	Designator	Suffix
TL	741C	Р

Table 1

(ii) There are two supply voltages for op-amp, labeled $+V_s$ and $-V_s$. Draw the three ways showing how the supply voltage can be connected.

(6 marks)

(b) Refer to **Figure 7** and answer the following questions.

(i)	Identify the amplifier.	(1 mark)
(ii)	Determine the closed-loop gain, A _{CL} .	(3 marks)
(iii)	Calculate the output voltage, V _{out} .	(2 marks)

(iv) Sketch the input voltage, V_{in} and output voltage, V_{out} on the same curve.

(4 marks)

Figure 7

END OF QUESTION PAPER