UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION
 SEPTEMBER 2013 SESSION

SUBJECT CODE	$:$ FLD 10102
SUBJECT TITLE	$:$ ELECTRONIC DEVICES
LEVEL	$:$ DIPLOMA
TIME I DURATION	$:$
DATE	$:$

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
6. Answer all questions in English.

THERE ARE 8 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Define the doping process.
(b) Describe the difference between n -type and p -type semiconductor materials.
(c) Determine the current that will flow in the circuit of Figure 1 below which uses two oppositely-connected diodes in parallel. Both diodes are germanium type.
(5 marks)

Figure 1
(d) Draw I-V characteristic curve of transistor and indicate on the curve all operating regions for transistor.
(5 marks)
(e) Determine the alpha rating for the transistor as shown in Figure 2. Then determine the value of I_{C} using both the alpha rating and the beta rating of the transistor.

Figure 2

Question 2

(a) By referring to Figure 3 below, answer the following questions:

Figure 3
(i) Explain the operation of the above rectifier circuit.
(ii) Sketch the waveform of V_{2} and V_{L}.
(iii) Calculate average load voltage ($\mathrm{V}_{\text {Lavg }}$).
(b) A primary voltage $\left(\mathrm{V}_{1}\right)$ of a transformer for a positive full-wave bridge rectifier is $150 \mathrm{~V}_{\text {RMs }}$. The transformer used has a turns ratio $\mathrm{N}_{1}: \mathrm{N}_{2}=4: 1$ and a load resistance of $12 \mathrm{k} \Omega$. (Diodes are silicon type). Calculate:
(i) the peak load voltage $\left(\mathrm{V}_{\mathrm{Lp}}\right)$

> (2 marks)
(ii) the average load voltage ($\mathrm{V}_{\text {Lavg }}$)
(iii) the average load current (LLavg)

Question 3

(a) By referring to the zener voltage regulator circuit as shown in Figure 4, calculate I_{z}. (Consider ideal zener diode).

IN968A Parameters:
$\mathrm{V}_{\mathrm{z}}=4.2 \mathrm{~V}$
$\mathrm{I}_{\mathrm{ZK}}=0.2 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{ZM}}=50 \mathrm{~mA}$

Figure 4
(b) Determine whether zener diode IN968A used in circuit in Figure 4 can maintain its regulation. Give your reason for your answer.

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.

Question 4

Determine the minimum and maximum input voltages that can be regulated by the zener diode in Figure 5 below. (Consider ideal zener diode).
(20 marks)

IN4735 Parameters:
$\mathrm{V}_{\mathrm{Z}}=10 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{ZT}}=40 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{ZK}}=3 \mathrm{~mA}$
$P_{D}=1 \mathrm{~W}$ at $T_{L}=50^{\circ} \mathrm{C}$

Figure 5

Question 5

(a) Draw symbols of PNP and NPN transistor. Show their terminals and currents with direction.
(4 marks)
(b) A high sensor water module in Figure 6 below uses a bipolar junction transistor to make a relay $12 \mathrm{~V}_{\mathrm{dc}}$ energize and function. The operation of the circuit is as follows: When sensor detects water, switch is closed and the transistor will 'ON'. The relay then will be energized. Given $\beta=100$, determine $I_{B}, I_{C}, I_{E}, V_{B E}, V_{C E}$ and $V_{C B}$. (Transistor based on silicon)
(16 marks)

Figure 6

Question 6

(a) (i) An opamp's IC can be identified by 7 character ID code. Distinguish the code by referring to Table 1 below.
(4 marks)

Prefix	Designator	Suffix
TL	741 C	P

Table 1
(ii) There are two supply voltages for op-amp, labeled $+\mathrm{V}_{\mathrm{S}}$ and $-\mathrm{V}_{\mathrm{S}}$. Draw the three ways showing how the supply voltage can be connected.
(6 marks)
(b) Refer to Figure 7 and answer the following questions.
(i) Identify the amplifier.
(ii) Determine the closed-loop gain, A_{CL}.
(iii) Calculate the output voltage, $\mathrm{V}_{\text {out }}$.
(iv) Sketch the input voltage, $\mathrm{V}_{\text {in }}$ and output voltage, $\mathrm{V}_{\text {out }}$ on the same curve.
(4 marks)

Figure 7

END OF QUESTION PAPER

