CONFIDENTIAL

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2013 SESSION

SUBJECT CODE	:	FED 10103
SUBJECT TITLE	:	ELECTRICAL FUNDAMENTA
LEVEL	:	DIPLOMA
TIME / DURATION	:	2.5 HOURS
DATE	:	

INSTRUCTIONS TO CANDIDATE

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 5 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions. Please use the answer booklet provided.

Question 1

(a) Identify the four-band color code of the following resistors

No.	Value
1	$3.3 \times 10^3 \Omega \pm 10\%$
2	100 Ω ± 5%
3	88 MΩ ± 10%

- (6 marks)
- (b) Explain briefly Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL) (6 marks)
- (c) Define voltage, V and current, I, and state their units (6 marks)

Question 2

In **Figure 1**, determine the equivalent resistance, R_{eq} seen by the current source 10A, the current, *I* and the voltage, *V*.

Figure 1

(10 marks)

CONFIDENTIAL

Question 3

Based on the circuit shown in **Figure 2**, fill up **Table 1** with the related values of voltage, current, resistance, and power dissipated. Show all your works. (**Submit this page**).

Figure 2

	R ₁	R ₂	R ₃	TOTAL
Voltage, V				
Current, I				
Resistor, R	220 Ω	130 Ω	470 Ω	
Power, P				

(16 marks)

Question 4

Apply the superposition theorem on **Figure 3** and determine the voltage, *v* and the current through resistor $4k\Omega$. Indicate the current direction.

(16 marks)

Figure 3

SECTION B (Total: 40 marks)

INSTRUCTION: Answer only TWO (2) questions Please use the answer booklet provided.

Question 5

Based on the circuit in **Figure 4**, determine:

(a)	the Thevenin equivalent at the terminal of resistor <i>R</i> so that the maximum			
	power is transferred	(12 marks)		
(b)	the relationship between R and Thevenin resistance, R_{TH}	(3 marks)		
(C)	the maximum power transferred to resistor, R	(5 marks)		

Figure 4

Question 6

Based on Figure 5, determine:

- the current, i_x using nodal analysis. (a)
- the power supplied by the 4A current source (b)

Question 7

By using mesh analysis on Figure 6, determine:

- the voltage, V_x (a)
- the current through the resistor 10Ω (magnitude and direction) (b)

Figure 6

END OF QUESTION PAPER

(6 marks)

- (15 marks)
- (5 marks)