Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris

Madiha Atta, Ani Idris, Ataullah Bukhari, Suzana Wahidin

Abstract

Light quality and the intensity are key factors which render microalgae as a potential source of biodiesel. In this study the effects of various intensities of blue light and its photoperiods on the growth and lipid content of *Chlorella vulgaris* were investigated by using LED (Light Emitting Diode) in batch culture. *C. vulgaris* was grown for 13 days at three different light intensities (100, 200 and 300 μ mol m⁻² s⁻¹). Effect of three different light and dark regimes (12:12, 16:08 and 24:00 h Light:Dark) were investigated for each light intensity at 25 °C culture temperature. Maximum lipid content (23.5%) was obtained due to high efficiency and deep penetration of 200 μ mol m⁻² s⁻¹ of blue light (12:12 L:D) with improved specific growth (1.26 d⁻¹) within reduced cultivation time of 8 days. White light could produce 20.9% lipid content in 10 days at 16:08 h L:D.

Keywords : *C. vulgaris*; Blue LED intensity; Light and dark regime; Lipid content; Specific growth rate

Citation:

Atta, M., Idris, A., Bukhari, A., & Wahidin, S. (2013). Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. *Bioresource Technology*, *148*(0), 373–378. doi:http://dx.doi.org/10.1016/j.biortech.2013.08.162