

UNIVERSITI KUALA LUMPUR

FINAL EXAMINATION JULY 2010 SESSION

SUBJECT CODE

WQD10102

SUBJECT TITLE

TECHNICAL MATHEMATICS I

LEVEL

DIPLOMA

TIME / DURATION

9.00 am - 11.30 am

(2 HOURS and 30 MINUTES)

DATE

8 NOVEMBER 2010

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of THREE (3) parts. Part A, B and C. Answer all questions in Part A and B. For Part C, answer two (2) questions only.
- 6. Answer all questions in English.
- 7. Formula Sheet is not appended.

THERE ARE 7 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

PART A (Total: 15 marks)

MULTIPLE CHOICE QUESTIONS

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

- 1. Evaluate 7 log 4.5, correct to 3 decimal places.
 - A. 3.150
 - B. 31.500
 - C. 4.572
 - D. 457.2
- 2. Without using a calculator, determine the value of $2^{\log_2 5}$.
 - A. 5
 - B. 2
 - C.
 - D. (
- 3. Simplify $\frac{6m^4n^3}{4m^{-3}n^{-3}}$
 - A. $\frac{6}{4}mr$
 - B. $\frac{3}{2}m^7n^6$
 - C. $\frac{3}{2}m$
 - D. $\frac{3}{2}m^{7}$
- 4. The width of a rectangle is 5 cm more than its length. Determine the dimension, if the area is 104 cm².
 - A. Width = 8, length = 13
 - B. Width = 5, length = 8
 - C. Width = 8, length = 5
 - D. Width = 13, length = 8

- 5. If $\frac{p}{4} + p = 2$, then p is equal to:
 - A. $\frac{8}{5}$
 - B. $\frac{8}{3}$
 - C, 4
 - D. -4
- 6. If a + 3(a 2) = 6, determine the value of a.
 - A. 0
 - B. 4
 - C. 2
 - D. 3
- 7. $2\begin{bmatrix} 3 & -4 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 4 & -5 \end{bmatrix} =$
 - A. $\begin{bmatrix} 8 & 9 \\ 5 & 3 \end{bmatrix}$
 - B. $\begin{bmatrix} -8 & -7 \\ -9 & 3 \end{bmatrix}^*$
 - C. $\begin{bmatrix} 8 & -9 \\ 12 & -3 \end{bmatrix}$
 - D. $\begin{bmatrix} 8 & -7 \\ 12 & -3 \end{bmatrix}$
- 8. Determine the type of roots of $x^2 + 3x 5 = 0$.
 - A. Two real and equal roots
 - B. Two real and distinct roots
 - C. Complex roots
 - D. No solution

- 9. What are the factors of $12x^2 10x + 2$?
 - A. (4x-2)(3x+1)
 - B. (4x-1)(3x-2)
 - C. (4x + 1)(3x 2)
 - D. (3x-1)(4x-2)
- 10. Let $P(x) = 4x^2 3x + 2$, Q(x) = -4x + 6, determine P(x) Q(x).
 - A. $4x^2 + x + 12$
 - B. $4x^2 + x 4$
 - C. $4x^2 7x + 8$
 - D. $4x^2 + 7x 4$
- 11. Given that $\sin\theta = 0.7672$ and $\cos\theta = -0.5072$, then $\cot\theta$ is equal to:
 - A. -0.6611
 - B. -1.5126
 - C. 1.5126
 - D. **0**.6611
- 12. The angles between 0° and 360° whose $\cos \theta = -0.895$ are:
 - A. $\theta = 26.49^{\circ}, 153.51^{\circ}$
 - B. $\theta = 116.49^{\circ}, 243.51^{\circ}$
 - C. $\theta = 153.51^{\circ}, 206.49^{\circ}$
 - D. $\theta = 63.51^{\circ}, 116.49^{\circ}$
- 13. Calculate (7 + 9i) (6 4i).
 - A. 13 + 5i
 - B. 1+13i
 - C. 1+5i
 - D. 13 i

$$Z^n = r^n(\cos n\theta + i \sin \theta)$$

$$Z^n = r^n e^{in\theta}$$

$$Z^n = r^n \angle n\theta$$

The given Theorem is:

- A. Binomial Theorem
- B. Pythagoras Theorem
- C. De Moivre's Theorem
- D_k Chain Rule Theorem
- 15. Given that Z = -2.8 + 3.12i. Determine the value of θ .
 - A. 131.91°
 - B. 48.09°
 - C. 236.31°
 - D. 123.69°

PART B (Total: 45 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

Given that $\log_2 3 = 1.585$ and $\log_2 5 = 2.322$, without using calculator, evaluate $\log_2 75$.

[4 marks]

Question 2

Solve the following equations:

a)
$$2(k-1)=7(k-1)$$

b)
$$\frac{(2u-1)}{3} - \frac{(3u-1)}{4} = 1$$

[5 marks]

Question 3

Solve $2q^2 + 2q - 19 = 0$ by using the quadratic formula, giving the answer in 2 decimal places.

[5 marks]

Question 4

Given
$$A = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$. Determine:

- a) A-2B.
- b) Verify that $(AC)^T = C^T A^T$.

[10 marks]

Question 5

- a) Determine the remainder, when $P(x) = x^3 4x^2 + 2x + 5$ is divided by x 3.
- b) Determine the quotient and the remainder when $x^4 3x^2 + 10x 5$ is divided by x + 3.

[10 marks]

Question 6

A ladder leans against the side of a building with its foot 6.5 meter away from the building and makes an angle of 65° with the ground. Giving answer correct to 2 decimal places, determine:

- a) the length of the ladder
- b) the area of the triangle ABC

Figure 3

[5 marks]

Question 7

Given z = 5 + 6j and w = 3 - 2j. Determine:

- a) $\overline{z+w}$
- b) $z \cdot w$

[6 marks]

PART C (Total: 40 marks)

INSTRUCTION: Answer TWO questions.
Please use the answer booklet provided.

Question 1

Given the system of equations:

$$x + y + z = 4$$
$$2x - y + 2z = 5$$
$$x - 2y - z = -3$$

- a) Write the system into matrix form.
- b) Solve the system by using Cramer's rule.

[20 marks]

Question 2

a) Use the method of elimination to solve the system of equations:

$$10x - 4y = 50$$
$$5x + y = 100$$

b) Determine the values of p and q if (x-1) and (x-2) are both factors of $f(x) = x^3 + px^2 + qx - 6$. Then, factorize completely.

[20 marks]

Question 3

- a) Given Z = -2 + 5i.
 - i. Draw the Argand diagram of Z
 - ii. Determine the modulus and the argument of Z.
 - iii. Express the trigonometric form of Z.

b) If
$$Z_1 = 1 + 3i$$
 and $Z_2 = 5 - 6i$, compute $\frac{Z_1 \cdot Z_2}{Z_1 + Z_2}$.

[20 marks]

END OF QUESTION