SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION JULY 2010 SESSION

SUBJECT CODE

FED 20102

SUBJECT TITLE

ELECTRICAL MACHINES

LEVEL

DIPLOMA

TIME / DURATION

12.30 pm - 2.30 pm

(2 HOURS)

DATE

13 NOVEMBER 2010

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. Answer four (4) questions only.
- 6. Answer all questions in English.

THERE ARE 5 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

INSTRUCTION: Answer FOUR questions only.

Please use the answer booklet provided.

Question 1

- (a) How is the induced voltage of a separately excited dc generator affected if;
 - i. The speed increases.
 - ii. The exciting current is reduced

(5 marks)

(b) The data of dc shunt generator in figure 1 is as follows:

Voltage across armature resistance, V_{Ra} = 10 V

Armature resistance, Ra = 0.5Ω

Shunt resistance , Rsh = 200 Ω

Load resistance, R_L = 20 Ω

Determine armature current and load current.

(10 marks)

Figure 1

(c) A series dc generator 4 poles, wave armature winding has 200 conductors and runs at 1200 rpm supplied a full load output of 10 kW at 250 V. Armature resistance 0.2 Ω , series field winding 0.55 Ω , with mechanical losses at 500 W, Find :-

(10 marks)

- i. Armature current
- ii. Flux per pole
- iii. Efficiency at full load.

JULY 2010

CONFIDENTIAL

Question 2

(a) For dc shunt motor, shows that :-

The speed , N =
$$K \frac{V_s - I_a R_a}{\phi}$$

Where K is constant parameter.

(5 marks)

(b) A shunt motor runs at 460 rpm when taking 240 A at 100 V. What will be the speed of the motor when taking 90 A at 220 V. Armature resistance and shunt resistance are $0.032~\Omega$ and 46 Ω . At what speed would it have to run as a generator to give 150 A at 180 V.

(10 marks)

(c) The torque measured at the pulley of a series motor is 130 Nm, when motor taking 50 A at 200 V and runs at 600 rpm. Armature and field winding resistance are $0.3~\Omega$ and $0.2~\Omega$ respectively. Find :-

(10 marks)

- i. Output power.
- ii. *Total of copper losses.
- iii. Motor's efficiency (take mechanical losses equal to 571 W)

JULY 2010

CONFIDENTIAL

Question 3

(a) Explain, why the speed of induction motor drops as the motor's load increase?

(3 marks)

(b) A 6 pole, 50 Hz squirrel cage motor runs on load at a shaft speed of 970 rpm.

Calculate :-

- i. The percentage slip
- ii. The frequency on induced current in the rotor.

(5 marks)

(c) A 415 V, 3 phase, 4 pole, 50 Hz, 5 hp Y connected induction motor.

The equivalent circuit parameters are :-

$$R_1 = 0.45 \Omega$$

$$R_2 = 0.4 \Omega$$

$$X_1 = X_2 = 0.8 \Omega$$

$$X_m = 30 \Omega$$

The stator core loss is 50 W and rotational loss is 150 W. For a slip of 0.04.

Find:-

(17 marks)

- i. Input current
- ii. Air gap power
- iii. Efficiency

JULY 2010 CONFIDENTIAL

Question 4

(a) List the types of losses that occurs in a transformer.

(5 marks)

(b) Show that the ratio of the total voltage on the primary of a transform to the total voltage on the secondary of a transformer is given as:-

$$\frac{Vp}{Vs} = \frac{Np}{Ns} = a$$

(7 marks)

c) A 20 kVA, 8000 / 227 V distribution transformer has the following resistances and reactances:_

$$R_P = 32 \Omega$$

$$R_S = 0.05 \Omega$$

$$X_P = 45 \Omega$$

$$X_S = 0.06 \Omega$$

$$R_C = 250 \text{ k}\Omega$$

$$X_M = 30 \text{ k}\Omega$$

(13 marks)

- i. Find the approximation equivalent circuit of this transformer referred to the high voltage side.
- ii. Assume that this transformer is supplying rated load at 277 V and 0.8 PF lagging.
- iii. What is the transformer efficiency under the condition of part?.

Question 5

(a) A 2.5 kW, 120 V, 50 Hz capacitor-start motor has the following impedances for the main and auxiliary windings.

$$Z_{\text{main}} = 4.5 + j3.7 \Omega$$

$$Z_{aux} = 9.5 + j3.5 \Omega$$

Find the value of starting capacitance that will place the main and auxiliary winding.

(5 marks)

(b) A 110 V, 50 Hz, four pole, capacitor –start motor has the following equivalent circuit parameters value and losses.

$$R_{1,main} = 2.02 \Omega$$

$$X_{1,main} = 2.79 \Omega$$

$$R_{2,main}$$
 = 4.12 Ω

$$X_{2,main} = 2.12 \Omega$$

$$X_{m,main} = 66.8 \Omega$$

Friction and windage loss = 13 W

For a slip of 0.05, determine:

i. stator current

(8 marks)

ii. output power

(8 marks)

iii. efficiency

(4 marks)

END OF QUESTION