SET B

UNIVERSITI KUALA LUMPUR MALAYSIA FRANCE INSTITUTE

FINAL EXAMINATION JULY 2010 SESSION

SUBJECT CODE

: FED 10202

SUBJECT TITLE

ELECTRICAL PRINCIPLES

LEVEL

: DIPLOMA

TIME / DURATION

9.00am - 11.30am

(2.5 HOURS)

DATE

10 NOVEMBER 2010

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of Two (2) Sections, Section A and B. Answer all question in Section A. For Section B answer only Two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 5 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

(a) List 3 factors that determine the resistance value of a resistor.

(3 marks)

- (b) Convert the following SI units
 - (i) .95,629 kilohms to Megaohm
 - (ii) 0.007 MW to kilowatts
 - (iii) 1.6 m² to square centimeter
 - (iv) 52,589 millivolts to kilovolts

(10 marks)

(c) The circuit diagram system is shown in Figure 1. Voltage across R_1 is 6 V and voltage across R_4 and R_5 is 30 V. Determine the value of battery E and resistance R_4 .

Figure 1

(7 marks)

JULY 2010 CONFIDENTIAL

Question 2

The circuit diagram for series parallel circuit is shown in Figure 2:

Figure 2

(a) From Figure 2, find the current through each resistor

(16 marks)

(b) The voltage drop across resistor R_4 and power dissipated at R_7

(4 marks)

Question 3

- (a) Figure 3 is the sinusoidal waveform for an instantaneous voltage, determine
 - i the period of the waveform
 - ii. the frequency
 - iii. the angular velocity

v(t)

10V -

- iv. value of v(t) at t = 0 msec, t = 0.025msec and t = 0.125 msec
- v. Write the equation for the waveform

Vm

0.1

0.2

t (mS)

- (b) For the circuit shown in Figure 4, determine:
 - i. the total impedance in polar form.
 - ii. I_T , I_1 , and I_3

(12 marks)

Figure 4

PART B (Total: 40 marks)

INSTRUCTION: Answer Two (2) questions only

Please use the answer booklet provided.

Question 4

Determine the current that must be supplied to the winding in Figure 5 in order to produce a flux of 6×10^{-3} Wb throughout the core. The mean length of the cast steel is 1.2 m and its cross section has dimensions 10 cm \times 5 cm. Neglect fringing in the air gap.

(20 marks)

The characteristics of magnetic circuit for cast steel are as given below:

B (Wb / m ²)	0.4	0.67	0.8	1.0	1.2
H(AT/m)	120	200	320	520	1000

Question 5

A three phase 415 V, 50 Hz, a.c supply is feeding a three phase star connected loads, which is $Z_m = 35 - jX_c$, $Z_{yn} = 35 + jX_L$ and $Z_{bn} = 35\Omega$ as shown in Figure 6. Determine:

- (a) the inductance, X_L and capacitance, X_C .
- (b) line current, I_1 , I_2 and I_3 .
- (c) neutral current, In

(20 marks)

Figure 6

Question 6

From Figure 7, the transformer ratio is 40 : 30. Assuming the transformer is ideal, determine the magnitude of;

- (a) secondary voltage (e_s)
- (b) primary voltage (e_p)
- (c) primary current (ip)
- (d) average input power (Pin)
- (e) average output power (P₀)

Figure 7

END OF QUESTION PAPER