# CONFIDENTIAL

SET A



# UNIVERSITI KUALA LUMPUR Malaysia France Institute

# FINAL EXAMINATION JULY 2010 SESSION

SUBJECT CODE

FED 10102

SUBJECT TITLE

ELECTRICAL FUNDAMENTAL

**LEVEL** 

DIPLOMA

TIME / DURATION

8.00 pm - 10.00 pm

(2 HOURS)

DATE

15 NOVEMBER 2010

#### **INSTRUCTIONS TO CANDIDATES**

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 6 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions
Please use the answer booklet provided.

#### Question 1

a) Identify the color code of the following resistors

| Value                             | 1 <sup>st</sup> band | 2 <sup>nd</sup> band | 3 <sup>rd</sup> band | 4 <sup>th</sup> band |
|-----------------------------------|----------------------|----------------------|----------------------|----------------------|
| $1.5 \times 10^3 \Omega \pm 10\%$ |                      |                      |                      |                      |
| $3.3 \times 10^6 \Omega \pm 5\%$  |                      |                      |                      |                      |
| 51 kΩ ± 10%                       |                      |                      |                      |                      |
| 79 MΩ ± 10%                       |                      |                      |                      |                      |

(8 marks)

- b) Three lamps A, B and C as shown in Figure 1(a) are connected in series across a 18V supply. Lamp A has an internal resistance R<sub>1</sub>, lamp B has an internal resistance R<sub>2</sub> and lamp C has an internal resistance R<sub>3</sub> as shown in Figure 1(b). If the total resistance is 36Ω, voltage drop across R<sub>2</sub> is V<sub>2</sub> = 5V and voltage drop across R<sub>3</sub> is V<sub>3</sub> = 3V, determine:
  - i. the voltage drops across R<sub>1</sub>
  - ii. the supply current, I
  - iii. the value of resistors  $R_1$ ,  $R_2$  and  $R_3$ .

(12 marks)

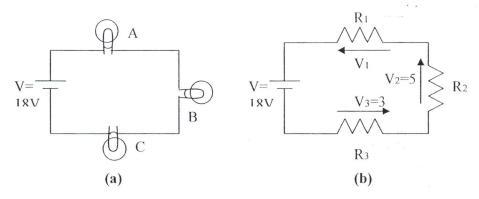



Figure1

Determine the total current from the source and the current through each resistor for each position of the ganged switch in Figure 2

(20 marks)

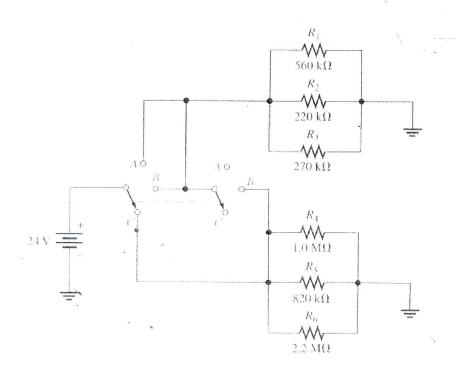



Figure 2

Use mesh analysis to find the current in each resistor of the circuit shown in **Figure 3**. After finding the current, find the power dissipated at resistor 250  $\Omega$ 

(20 marks)

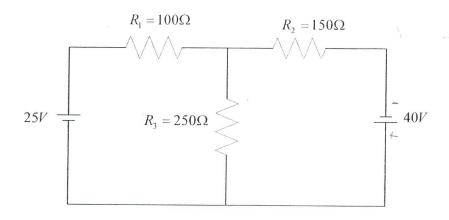



Figure 3

SECTION B (Total:40 marks)

INSTRUCTION: Answer only TWO (2) questions.

#### Question 4

- a) In a series-parallel circuit as shown in **Figure 4**, the two parallel branches B and C are in series with A. Calculate:
  - i. The total resistance,  $R_T$
  - ii. The currents  $I_A$  ,  $I_B$  and  $I_C.$
  - iii. The voltage drop across each resistor (  $V_{\text{A}},\,V_{\text{B}},\,V_{\text{C}}$  and  $V_{\text{D}})$

(12 marks)

- b) i. Briefly explain the Kirchhoff's Voltage Law and Kirchhoff's Current Law.
  - ii. From Figure 4, verify that  $V_S = V_A + V_B + V_D$  and  $I_A = I_B + I_C$

(8 marks)

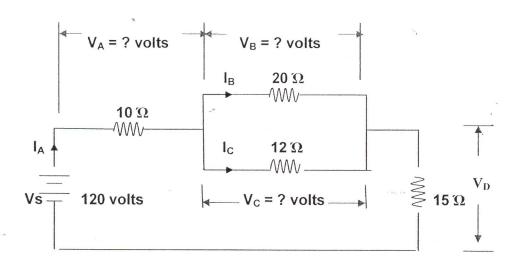



Figure 4

a) What are the 5 steps for applying Thevenin's Theorem?

(5 marks)

b) Determine the voltage and current for the load resistor in the bridge circuit of Figure 5.

(15 marks)

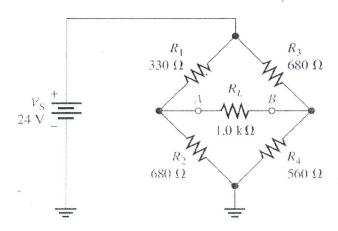



Figure 5

a) What are the 4 steps for applying Superposition Theorem?

(8 marks)

b) Determine the current through  $R_3$  by using Superposition theorem

(12 marks)

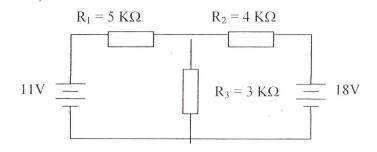



Figure 6

### **END OF QUESTION PAPER**