Document No: UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

Effective Date: 01 December 2008

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION JANUARY 2011 SESSION

SUBJECT CODE

: FEB 10103

SUBJECT TITLE

CIRCUIT THEORY

LEVEL

: BACHELOR

TIME / DURATION

: 9.00am - 12.00pm

(3 HOURS)

DATE

14 MAY 2011

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer three (3) questions only.
- 6. Answer all questions in English.

THERE ARE 7 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

- (a) State the definition of:
 - i. Voltage .
 - ii. Current
 - iii. Resistance
 - iv. Kirchoff's Current Law (KCL)

(4 marks)

(b) If a resistor with a current of 2A through it converts 1000J of electrical energy into heat energy in 15s, what is the voltage across the resistor?

(2 marks)

- (c) Determine the resistance and tolerance of each of the following 4-band resistors:
 - i. Brown, gray, red, silver
 - ii. Red, violet, orange, gold

(4 marks)

Question 2

Refer to **Figure 1**, by given total resistance, $R_T = 773 \Omega$, determine:

(a) The Vs

(2 marks)

(b) The value of each resistor.

(4 marks)

(c) The total power delivered to the circuit.

(3 marks)

Question 3

- (a) Referring to the **Figure 2**, an alternating voltage has the equation v(t)=100sin377t V. Determine:
 - i. Peak voltage, V_P
 - ii. Effective value (r.m.s voltage), V_{rms}
 - iii. The frequency, f
 - iv. The period, T
 - v. Instantaneous voltage at t = 1 ms

(5 marks)

Figure 2: An alternating voltage waveform

(b) Write equation for the waveform of **Figure 3**. Express the phase angle in degree.

Figure 3

(2 marks)

- (c) Refer to the circuit in Figure 4.
 - i. Find total impedance \mathbf{Z}_T
 - ii. Determine the voltages V_R and V_L using the voltage divider rule
 - iii. Verify Kirchoff's voltage law around the close loop

(4 marks)

Figure 4

Question 4

Figure 5 shows Series-parallel AC circuit, calculate:

(a) The total impedance Z_T

(4 marks)

(b) The supply current I

(1 marks)

(c) The circuit phase angle and power factor *PF*

(1 marks)

(d) Currents I_1 and I_2

(4 marks)

Figure 5

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions only

Please use the answer booklet provided.

Question 5

Based on the circuit in Figure 6:

(a) Write the loop-current (mesh-current) equations.

(6 marks)

(b) Solve for J_1 and I_2 .

(10 marks)

(c) Determine the voltage V_{ab} .

(4 marks)

Question 6

(a) Based on the circuit in Figure 7, find the thevenin equivalent circuit at terminal AB.

(16 marks)

- Using the equivalent circuit in part (a), determine: (b)
 - i. Current through the load resistance.
 - ii. Power dissipated in RL

(4 marks)

JANUARY 2011 CONFIDENTIAL

Figure 7

Question 7

Figure 8 show the a.c network, by using the superposition theorem, determine the voltage drop across $\frac{1}{12}F$ capacitor, $V_0(t)$.

(20 marks)

Question 8

The load in most electrical power systems is predominantly inductive, so most have lagging power factors. This is an uneconomical situation for utility companies, who would prefer to have a unity power factor (θ =0°). To achieve a unity power factor, the capacitive loads need to install in the system. Based on the above statement, analyze the power distribution system shown in **Figure 9**, and hence:

(a) Find the total apparent power, the power factor and magnitude of I_T without capacitance ${\bf C}$ in the system.

(10 marks)

(b) Find the capacitive VARs that must be produced by capacitance **C** to make the power factor of the system equal unity.

2 marks)

JANUARY 2011 CONFIDENTIAL

(c) Find the capacitance **C** necessary to achieve the power factor in part (ii).

(2 marks)

(d) Find the total power apparent power and total I_T after the power factor correction.

(6 marks)

Figure 9

END OF QUESTION PAPER