SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION JANUARY 2011 SESSION

SUBJECT CODE

FKB 24302

SUBJECT TITLE

ENGINEERING MATHEMATICS 3

LEVEL

BACHELOR

TIME / DURATION

9.00am - 11.00am

(2 HOURS)

DATE

04 MAY 2011

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers in the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of FIVE (5) questions. You are required to answer FOUR
 - (4) questions only. Answer all questions in English.
- 6. Fomula is appended.

THERE ARE 12 PAGES OF QUESTIONS, EXCLUDING THIS PAGE.

(Total: 75 marks)

INSTRUCTION: Answer FOUR (4) questions only.

Please use the answer booklet provided.

Question 1

(a) Given
$$(2x \quad 3)\begin{pmatrix} 11 \\ -6x \end{pmatrix} = (100)$$
. Calculate the value of X.

(1.5 marks)

$$\begin{array}{ccc} & & & & & & & & & & \\ (b) & & & & & & & & \\ -\sin\theta & & & & & & \\ \end{array} \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}.$$

(1.5 marks)

(c) In the transformation of two dimensional space, find the matrix operator for a reflection on the line 2y=-3x (3 marks)

(d)

- (i) Given the diagram above, figure **OABC** is the image of figure **Oabc**. Describe what has happened to figure **Oabc**.
- (ii) What type of transformation involved in this question and find the matrix operator.
- (iii) Find the image of point R under the same transformation.

(3 marks)

(e) Given that matrix
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. By using the inverse matrix method,

determine the image of the line x-2y+z=1

(6 marks)

Question 2

(a) Obtain the Cartesian equation of the curve by eliminating the parameter from the parametric equations:

$$x = 5t - 10, y = 2t$$

(2 marks)

(b) Convert
$$x^2 + y^2 + x = \sqrt{x^2 + y^2}$$
 into Polar Form.

(4 marks)

(c) The parametric equations of an asteroid are $x=cos^3t$, $y=sin^3t$. Calculate the arc length of the asteroid on the interval $0 \le t \le \frac{\pi}{2}$.

(5 marks)

(d) Calculate the surface area obtained by revolving the graph of $y=\sqrt{x}$ between x=0 and x=1 about the x-axis.

(4 marks)

Choose the correct formulas:

$$A = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

$$S = \int_{A}^{B} \left\{ \left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} \right\}^{\frac{1}{2}} dt$$

$$A = 2\pi \int_{a}^{b} x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

$$S = \int_{A}^{B} \left\{ 1 + \left(\frac{dy}{dx}\right)^{2} \right\}^{\frac{1}{2}} dx$$

$$A = 2\pi \int_{a}^{b} y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$A = 2\pi \int_{a}^{b} x \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Question 3

(a) Given the curve of the polar equation $r=4\sin3\theta$. Complete the tables for the interval $0 \le \theta \le 2\pi$ and sketch the graph on the interval on the polar graph in **APPENDIX 5**

(5 marks)

(b) Obtain the polar equation for y = 3x + 5.

(5 marks)

(c) A cycloid is the curve traced out by a point on the circumference of a circle when the circle rolls along a straight line in its own plane. The equations of a cycloid is given by

$$x = t - \sin t$$
, $y = 1 - \cos t$.

Calculate the arc length, S of the cycloid over the interval $0 \le t \le \frac{\pi}{2}$.

(5 marks)

Question 4

(a) Determine vector V if V is parallel to the vector 8i+j+4k and is equal in magnitude to the vector i-2j+2k

(4 marks)

(b) Determine the coordinates of vector Q if \overrightarrow{OQ} =1 and \overrightarrow{OQ} is in the direction of 3i + 2j + 6k.

(3 marks)

(c) Refer the following diagram:

A, B and C are the points whose position vectors are 2i-j+5k, i-2j+k and 3i+j-2k respectively. Given that L and M are the midpoints of AC and CB.

i) Determine **OL** and **OM**.

(6 marks)

ii) Hence, show that LM is parallel to AB.

(2 marks)

Question 5

- (a) Given u = 4i hj and v = 6i + 2j. If u = kv, find the value of h and k. (4 marks)
- (b) The diagram 1 below shows a rectangular field with dimensions 140m by 77m. A boy pulls a truck directly from A to C with a force of 101.5N. Find the components of this force parallel and perpendicular to \overline{AB} .

Diagram 1

(c) \overrightarrow{OA} and \overrightarrow{OB} are two vectors such that $\overrightarrow{OA} = \mathbf{a} + 2\mathbf{b}$, $\overrightarrow{OB} = 2\mathbf{a} - \mathbf{b}$ and \overrightarrow{OA} is perpendicular to \overrightarrow{OB} .

Show that **a** • **b** =
$$\frac{2}{3}$$
 (**b**² - **a**²)

(6 marks)

END OF QUESTION

APPENDIX 1

STANDARD TRANSFORMATIONS

(1)	Rotation through an angle , θ , about the origin $M = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$				
(2)	Rotation through $\frac{\pi}{2}$ clockwise about the origin	$\mathbf{M} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$			
(3)	Rotation through $\frac{\pi}{2}$ anti -clockwise about the origin	$\mathbf{M} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$			
(4)	Reflection in the x-axis	$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$			
(5)	Reflection in the y-axis	$\mathbf{M} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$			
(6)	Reflection in the line : $y = x$ or $y - x = 0$	$\mathbf{M} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$			
(7)	Reflection in the line : $y = -x$ or $y + x = 0$	$\mathbf{M} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$			
(8)	Reflection in the line : $y = mx$ or $y = x \tan \theta$	$M = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$			

	NOTE : $m = \tan \theta$	where :		
		$\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1 - m^2}{1 + m^2}$		
		$\sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta} = \frac{2m}{1+m^2}$		
(9)	Shear of θ in the direction O_x	$M = \begin{pmatrix} 1 & \tan \theta \\ 0 & 1 \end{pmatrix}$		
(10)	Shear of θ in the direction Oy	$M = \begin{pmatrix} 1 & 0 \\ \tan \theta & 1 \end{pmatrix}$		

APPENDIX 2

TRIGONOMETRIC IDENTITIES AND FORMULAS

FUNDAMENTAL IDENTITIES	FORMULAS FOR NEGATIVES			
$\csc\theta = \frac{1}{\sin\theta}$	$\sin(-\theta) = -\sin\theta$			
$\sec\theta = \frac{1}{\cos\theta}$	$\cos(-\theta) = \cos\theta$			
$\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$	$\tan(-\theta) = -\tan\theta$			
$\tan\theta = \frac{\sin\theta}{\cos\theta}$	$\csc(-\theta) = -\csc\theta$			
$\sin^2\theta + \cos^2\theta = 1$	$\sec(-\theta) = \sec\theta$			
$1 + \tan^2 \theta = \sec^2 \theta$	$\cot(-\theta) = -\cot\theta$			
$1 + \cot^2 \theta = \csc^2 \theta$	·			
ADDITION FORMULAS	SUBTRACTION FORMULAS			
$\sin(A+B) = \sin A \cos B + \cos A \sin B$	$\sin(A - B) = \sin A \cos B - \cos A \sin B$			
$\cos(A+B) = \cos A \cos B - \sin A \sin B$	$\cos(A - B) = \cos A \cos B + \sin A \sin B$			
$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \qquad \tan(A-B) = \frac{\tan A - \tan A}{1 + \tan A \tan B}$				
HALF-ANGLE FORMULAS	DOUBLE-ANGLE FORMULAS			
$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$	$\sin 2\theta = 2\sin\theta\cos\theta$			
$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$			
2 = 1 2	$\dots = 1 - 2\sin^2\theta$			
	$\dots = 2\cos^2\theta - 1$			
$\tan\frac{\theta}{2} = \frac{1 - \cos\theta}{\sin\theta} = \frac{\sin\theta}{1 + \cos\theta}$	$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$			
2 81110 1 + COSO	$1-\tan^2\theta$			
PRODUCT-TO-SUM FORMULAS	SUM-TO-PRODUCT FORMULAS			
$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$ $\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$	$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$			
$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$	$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$			

$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$	$\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$
$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$	$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$

APPENDIX 3

DIFFERENTIATION

TRIGONOMETRIC FUNCTIONS

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}\left(\sin f(x)\right) = \cos f(x)f'(x)$
$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}\left(\cos f(x)\right) = -\sin f(x)f'(x)$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}\left(\tan f(x)\right) = \sec^2 f(x).f''(x)$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}\left(\csc f(x)\right) = -\csc f(x)\cot f(x).f'(x)$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}\left(\sec f(x)\right) = \sec f(x) \tan f(x). f'(x)$
$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\frac{d}{dx}\left(\cot f(x)\right) = -\csc^2 f(x).f'(x)$

EXPONENTIAL FUNCTION

STANDARD FORM	GENERAL FORM			
$\frac{d}{dx}e^x = e^x$	$\frac{d}{dx}e^{f(x)} = e^{f(x)}.f'(x)$			

LOGARITHMIC FUNCTION

STANDARD FORM	GENERAL FORM
---------------	--------------

$$\frac{d}{dx} \ln x = \frac{1}{x}$$

$$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$$

APPENDIX 4

INTEGRATION

TRIGONOMETRIC FUNCTIONS

STANDARD FORM
$\int \cos x dx = \sin x + c$
$\int \sin x dx = -\cos x + c$
$\int \sec^2 x dx = \tan x + c$
$\int \sec x \tan x dx = \sec x + c$
$\int \csc x \cot x dx = -\csc x + c$
$\int \csc^2 x dx = -\cot x + c$

GENERAL FORM

Where:
$$f(x) = ax + b$$

$$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + c$$

$$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + c$$

$$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + c$$

$$\int \sec f(x) \tan f(x) dx = \frac{\sec f(x)}{f'(x)} + c$$

$$\int \csc f(x) \cot f(x) dx = \frac{-\csc f(x)}{f'(x)} + c$$

$$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + c$$

EXPONENTIAL FUNCTION

STANDARD FORM
$$\int e^x dx = e^x + c$$

STANDARD FORM

$$\int \frac{1}{x} \, dx = \ln|x| + c$$

GENERAL FORM

Where: f(x) = ax + b

$$\int \frac{1}{f(x)} dx = \frac{\ln |f(x)|}{f'(x)} + c$$

APPENDIX 5

Question 3(a)

$$0 \le r \le 2\pi$$

θ			,		
$r = 4 \sin 3\theta$					
θ			9.8		
$r = 4 \sin 3\theta$		-5			
				a.	

