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(Total: 100 marks)

INSTRUCTION: Answer only FIVE (5) questions.
Please use the answer booklet provided.

Question 1

(a)

(b)

(€)

FKB 15103 ENGINEERING MATHEMATICS 1

Given a polynomial with real coefficient P(Z) =z 4+22° -6z + 8.
(i) Show that z — (1 + J) is a factor of P(2).

(i) Hence, factorize P(Z) completely in Complex Domain.
(6 marks)

Given that a, b and c¢ are real numbers in the polynomial
P(z)=2z%+az’ +bz* +cz +3
Determine the value of a, b and ¢ such that the numbérs 2 and j are the roots of

P(z2).

(6 marks)
F(s) — 065+ 2
The transform of a signal is given b S)=——F~——=.
gnatis gvenby s+ 2s+17
Decompose F(S) completely in the Complex Domain.
(8 marks)



JANUARY 2011

Question 2

CONFIDENTIAL

(@) Minor M,.j is defined as the determinant of the matrix that results from removing the

i” row and j” column of the matrix A. If matrix 4=| —1
' -2

M, =

a

-2 and M,, =5, determine the values of a and b.

-6 b

0| and the minor
3

(4 marks)

(b) Table (1) below shows the number of boxes of milk A, B and C which were supplied

by a dairy to three houses in a village every week.

Second House

First House Third House
Milk A 1 2 3
Milk B 2 4 b
Milk C 3 5 6
Table (1)

The payment collected by the dairy owner from the first, second and third houses are
RM 130, RM 235 and RM 295 respectively. If x, y and z are the prizes for each box
of milk, determine the values of x, y and z by using the CRAMER’S RULE.

(c) Based on the given augmented matrix | 0

(i)

(i)

FKB 15103 ENGINEERING MATHEMATICS 1

-2 =1 | =1

5 5 15
0 k*-25k-5

For what values of k is the system inconsistent?

(11 marks)

For what values of & does the system has infinitely many solutions?

(2.5 marks)

(2.5 marks)
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Question 3

(a) Solve the following complex equation to find value of wand v.
. .2 .
7 —4—2ZZ=(Z+IV) - wZi
(5 marks)
(b) A system is said to be stable if all the poles of the transfer function lie within the unit

circle, lZI <1. The system is said to be critically stable if it has a pole on the unit

circle, ]Z] =1. Poles occur where the denominator of the transfer function is zero.

Determine whether the system with the following transfer functions are stable or

critically stable:

10

Gz = —m—mMmM—
(2) 3z24+2z+1

(7 marks)

(c) Figure 1 shows three coplanarforces F|, F, and F,which are actng at a point.
Given that /|, 10 N acting at angle of 45°; F,,8 N acting at angle of 120°and

F;, 15 Nacting atangle of 210°. Determine using complex number, the magnitude

and direction of the resultant of the coplanar forces.

(8 marks)
N 10N
 §
o0t
/‘k”’ iy
K ¥
ff ‘Q‘:L.(! \
I‘ ‘P’\ '. .
L7 s
"/”'
el
& :
15N Figure 1
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Question 4

(a) Find the angle between the plane X+ ) +2Z = 10

x—-1 y+3 )
and the line = =&z
2 3
(6 marks)
(b) Given the following 2 lines,
l,: x=1424, y==1+A4 and z=2+41
x+2
(o =2 41
4 -3
0] Determine whether the given 2 lines, 11 and 12 are parallel, intersecting or
skewed.
(8 marks)
(i) Find the shortest distance between lines, ll and 12
(6 marks)
FKB 15103 ENGINEERING MATHEMATICS 1 4
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Question 5

(a) By using thefirst principle method, determine the derivative of the function

3x
f(X) -3 at x=—-4.
x“+1
(5 marks)
X
(b) Find the values of a, b and ¢ if the derivative of V=
3+4/x-1
SRy Q: ax—1+bx+c _
LN
(8 marks)
T I s 1] dy
(c) If y.sinh™ x=x.sinh™ y evaluate — when x =2, y=1.
(7 marks)
Question 6
(@)  Solve the following integral
Jx sin~ x
1/1 _
(8 marks)

(b) Determine the following ndefinite integral by using appropriate substitutions

1
J'exh+exidx

(12 marks)

END OF QUESTION

FKB 15103 ENGINEERING MATHEMATICS 1 5
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APPENDIX 1 - Tr_gonometrlc Identltles and Formulas

Fundamental Identities
1
csch = —
sin®
1
secH =
cosfb
cotl = 1 _ 0959
tan®  sin0
sin 0
tan 6 =
cos 6

sin’0 + cos’® =1
1 + tan’0 = sec’d
1+ cot’0 = csc’0

_Formulas For Negatlves
sin (= 8)=—sin®
cos (- 0) _ cos 0
tan (- 6)= —tan®
cse(-8)= ~ese0

sec(-6)=secO
cot (— 6) = —cot0

_ Addition Formulas

sin(A + B) = sinAcosB + cosAsinB
cos(A + B) = cosAcosB - sinAsinB
tanA + tanB

tanlA +B)= —————
an( " ) ] —tanAtanB

_ Subtraction Formulas

sin(A — B) = sinAcosB — cosAsinB
cos(A - B) = cosAcosB + sinAsinB
tanA — tanB

tanfA -B)= —m8
an( ) 1+ tanAtanB

Haif-Angle Formu

_ Double-Angle Formulas

sin20 = 2sinOsind

c0s26 = cos’0 —sin’0

.......... =1-2sin%0
.......... =2cos’0—1
0 1-cos®  sind 2tand
tan— = tan20 = 7
" 14cosd 1—tan“0

2 sin®

sina.cosP = %[sin(a + B)+ sin((x = B)]
)- sin(a - B)]

cosasinf = —12—[sin(a +B
cosacosP = % [’cos(oc + B)+ cos(a - [3)]

sinasinf} = %[cos(a B) cos(Ot + B)]

sina +sinf} = 25ing+—BCosm—‘—E
2 2

sina —sinf} = 2(:03(?1—-|_Bsing~—B
2 2

cosa +cosP = 2cosOL+BcosOL;B

B g 2B

. a
cosa—cosB=—25stm 5

FKB 15103 ENGINEERING MATHEMATICS 1
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APPENDIX 2 — Table of Differentiation

~ Trigonometric Functions

—d—(sm f(x)) = f'(?()cos f(x)

dx

di(cos f(x)) = —f'(x)sin f(x)

X

= (tan (<)) =F'(x)sec” £(x)
dx
dx

d

dx

—(cot f(x)) =—f'(x)csc? f(x)

4 (csc f(x))=—f"(x)csc f(x)cot f(x)

i (sec f(x)) =f '(x) csc f(x) tan f(x)

~ Inverse Trigonometric Functions

-d—(sinhU) =coshUﬂJ—
dx dx

i(cosh U)=sinh pdY
dx dx

—d—(tanh U) =sech? Y
dx dx

X

dx

i(coth U)=—csch? vdU
dx dx

i(csch U)=-cschUcoth Ud—U
d dx

& (sech U)=-sechUtanh Ui—U
X

%(sinh"U = ﬁ%g

Ed;(cosh—‘ U):\/U_z__l%:- Us1
;—X(tanh‘l ):1_1U23—S , |uj<t
dix(csch“‘ :IUIx/_li—UZ_%g #0
%(sech‘U) Eﬁi_g , 0<U<1
_x(COth_] U>:1—1U2 i[i (B
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APPENDIX 3 — Table of Integration

cse f(x)

f'(x)

+C

J.csc f(x)cot £(x)dx =—

. f ! dx =sin™ (Ej
2 2 a

'f 21 2d)(zltan‘l(i}rC
a’+x a a

2 |x|>a
|x[Vx? —a’ a a
J : dx—lsec" Ll x|>a
|x| x*—a® a a

+C

, |x|<a

dX:COS~](§)+C , ’x’<a
2 a

Icosh f(x)dx = S

1

CHEN

—fW+C e dx =sinh™ +C , a>0
[sinh f(x)dx=°°§lf(i§")+c | \/_)%dx=cosh" -;5 +C , x>a
[sech? f(x)dx=ta?.h(i()x)+c [ azixz dx=étanh'l 2 +C, |x|<a
[esch? f(x)dx=—cogl(igx)+c [ azixz dx:écoth_l 2 +C, |x|>a
[sech £(x)tanh £(x)dx ="—Sef°'1(‘x—§(x)+c jx—;\/_zlJr—T.dx = —écsch“(g] +C , O<x<a
[esch £(x)coth £(x)dx =—%S") +C I;\/%——X—z—dx . ——ésech”l(gj +C , O<x<a
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