Title (35)	:	Simultaneous esterification and transesterification of waste cooking oil into fatty acid methyl ethyl esters (FAME) using nickel supported calcium oxide (Ni/CaO) as catalyst
Journal	:	AIP Conference Proceedings
Document Type	:	Conference Paper
Publisher	:	AIP Publishing
UniKL Author	:	Faridah Ghafar; Norzahir Sapawe; Amin Safwan Alikasturi
Link to Full Text	:	https://pubs.aip.org/aip/acp/article- abstract/2923/1/040016/3279811/Simultaneous-esterification- and?redirectedFrom=fulltext
Link to Scopus Preview	:	https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85190642678&doi=10.1063%2f5.0195466&partnerID=40&md5=b8907b7 0855cf3ab319efc78f612b029
Abstract	:	Fatty acid methyl esters or commonly known as biodiesel has emerged as a promising alternative to petroleum-based diesel. Biodesel is biodegradable, renewable, high lubricity, non toxic, good viscosity and have similar properties to diesel. In this study, the methyl ethyl esters were produced from waste cooking oil using nickel supported calcium oxide derived from waste cockle shells (Ni/CaO) as catalyst. The catalysts were synthesized using electrochemical method at 0.5 wt% nickel loading. The methyl ethyl esters were produced via simultaneous esterification and transesterification at different catalyst dosages (1 to 7 w/w%), reaction temperatures (60 to 90 oC) and reaction times (3 to 7 h) with constant molar ratio methanol to oil of 20:1. The high yield of methyl ethyl esters were obtained at 3 w/w% of catalyst dosage, 80 oC of reaction temperature and 5 h of reaction time.