Title (9)	:	Microbial fuel cell in industrial wastewater: treatment processes and resource recovery
Journal	:	Resource Recovery in Industrial Waste Waters
Document Type	:	Book Chapter
Publisher	:	2023 Elsevier Inc.
UniKL Author	:	Aliff Radzuan Mohamad Radzi , Azyyati Johari
Link to Full Text	:	https://www.sciencedirect.com/science/article/abs/pii/B9780323953276 000324#:~:text=MFCs%20can%20be%20used%20to,et%20al.%2C%20201 8).
Link to Scopus Preview	:	https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85176834845&doi=10.1016%2fB978-0-323-95327-6.00032- 4&partnerID=40&md5=0aaa34663f33aed29d9d5a9f5264a742
Abstract	:	Wastewater treatment is a high-cost, energy-intensive procedure due to the vast volumes of water that must be treated, which are mostly created by human activities and various businesses. Because of their higher treatment efficiency and added value, biological wastewater treatments have become a viable alternative to conventional technologies. Microbial fuel cells (MFCs) have emerged as a potential approach to simultaneously remove chemical oxygen demand and generate power as one of the most promising biological therapies. As a result, the benefits and drawbacks of current MFC methods for various types of wastewater are outlined. The technological challenges that MFCs face are discussed, as well as the financial viability of employing MFCs to treat wastewater.