The initial kinetics of NH₃/NH₄⁺ efflux from L₃*Teladorsagia circumcincta*

Noorzaid Muhamad^a, Lisa R. Walker^b, Kevin C. Pedley^b, David C. Simcock^b, Simon Brown^c,

- ^a Universiti Kuala Lumpur, Royal College of Medicine Perak, 3 Greentown Road, 30450 Ipoh, Perak, Malaysia
- ^b Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North, New Zealand
- ^c School of Human Life Sciences, University of Tasmania, Locked Bag 1320, Launceston, Tasmania 7250, Australia

Abstract

The initial rate of NH₃/NH₄⁺ accumulation in a medium containing I₃*Teladorsagia circumcincta* was 0.18–0.6 pmol h⁻¹ larva⁻¹, which increased linearly with larval density. However it appeared that the larva-generated external concentration of NH₃/NH₄⁺ did not exceed about 130 μ M. The rate of NH₃/NH₄⁺ accumulation increased with temperature between 4 °C and 37 °C, declined with increasing pH or increasing external NH₃/NH₄⁺ concentration and was not significantly affected by the concentration of the phosphate buffer or by exsheathing the larvae. We infer from these data that the efflux of NH₃/NH₄⁺ is a diffusive process and that the secreted or excreted NH₃/NH₄⁺ is generated enzymatically rather than dissociating from the surface of the nematode. The enzymatic source of the NH₃/NH₄⁺ is yet to be identified. Since the concentration of NH₃/NH₄⁺ in the rumen and abomasum is higher than 130 μ M, it is unlikely that *T. circumcincta* contributes to it, but NH₃/NH₄⁺ may be accumulated from the rumen fluid by the nematode.

Parasitology International 61 (2012) 487–492 http://www.sciencedirect.com/science/article/pii/S1383576912000499