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Abstract. Research on bio composite for automotive and aerospace application has been 

extensive with the advancement of natural fiber yarn and woven technology. Malaysia has 

marked kenaf as its main crop commodity by 2020. Surface modification of natural fibers is 

one of the significant areas in current biocomposite research. Alkali treatment removes certain 

amount of lignin, hemicellulose, and wax on the surface of fiber, besides depolymerizing 

cellulose structure and increasing percentage of crystallinity. Surface modification with NaOH 

of 3%, 6% and 9% concentration with various lengths of immersion time was conducted. The 

effect of alkali treatment on the mechanical strength and thermal degradation of kenaf fibre 
were investigated by means of fiber bundle tensile test and thermogravimetric analyser (TGA). 

Alkali treatment strongly modifies the thermal behaviour of the fibers, being particularly 

effective in the removal of noncellulosic matter. In addition, the mechanical properties of kenaf 

fibers revealed higher tensile strength for NaOH treated fibers. 

1.  Introduction 

Manufacturing high performance composites from natural fibres is actively pursued by researchers 

across the globe. Automotive and aerospace industry has started on natural fiber composite since 1999, 
with Kenaf fibers as seat backs, packaging trays, door inserts, load floors and pillars, in vehicle 

interiors [1]. Boeing developed sidewall panel for a 737 aircraft made of flax-thermoset composite in 

2013[2]. BMW i3 with its lightweight design produced side panel trim and instrument panel made of 
hemp in 2013, and Kenaf in random mat form in 2014 [3]. 

Kenaf is the name given to fiber from the bast of stems of plants of the genus Hibiscus, family 

Malvaceae and species H. cannabinus L. In Malaysia the government is heavily promoting the 

development of kenaf, as the next major industrial crop for the country in line with its policy in 
developing new sources of economic growth. Kenaf has a short gestation period of only four months 

and is a high carbon dioxide absorbent [4]. Kenaf growth does not need pest control and absorbs 

chemical and heavy metals from the soil. It also has a wider range of adaptation to climates and soils 
than any other fiber plant in commercial production [4].  

Not unlike other natural fibers, kenaf as plant fiber offers the undisputable advantage of 

renewability for which production requires little energy and involves carbon dioxide absorption whilst 
returning oxygen to the environment. It also has the advantage of low hazard manufacturing processes 

and less abrasion to processing equipment, besides involving much less emission of toxic fumes when 

subjected to heat as compared to current synthetic materials [5]. However, the main disadvantages of 
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natural fiber as composite reinforcements are the poor compatibility between fiber and matrix, 

flammability and high moisture sorption [6].  

This leads to an important area in natural fiber composites which is pre-treatment of fibers. 

Alkaline treatment commonly involves sodium hydroxyde (NaOH) reacting with the hydroxyl group 
of the natural fibers, removing hemicellulose, minimal amount of lignin, wax and oil that surround the 

external surface of the fiber, leading to increase in surface roughness [7]. This facilitates mechanical 

interlocking which leads to an improvement in fiber-matrix adhesion. [8]. In addition, alkalisation 
caused fiber fibrillation i.e. axial splitting of the elementary fibers, leading to a decrease in fiber 

diameter, increasing the aspect ratio and the effective surface area available for wetting by a matrix in 

composite [9]. High moisture content in fibers is attributed to presence of hemicellulose, and removal 

of hemicellulose by alkalization has been reported to reduce moisture absorption in natural fiber [10]. 
Alkalization also improved the strength of individual fibers. Removal of hemicelluloses cause the inter 

fibrillar regions of the fiber to becomes less dense and rigid, hence fibrils are more capable of 

rearranging themselves along the direction of tensile deformation, promoting even load distribution in 
the fibers and reduces stress concentration [11]. Edeerozey et al immersed kenaf in NaOH solution 

with different concentrations (3%, 6% and 9% NaOH) for 3 hours at room temperature and fiber 

bundle tensile test showed NaOH 6% giving the highest strength[12]. Changes in chemical 
constituents of natural fiber due to alkalization improved the strength and moisture content of fiber 

and composites fabricated from. 

Natural fibers are combustible in nature. When exposed to fire or high intensity heat source, 

polymer matrix and fibers will thermally decompose to yield flammable and non-flammable volatile 
gases [13]. The released flammable volatile gas will react with surrounding oxygen and form the final 

combustion product accompanied by heat release, which will continue the combustion cycle [14]. 

Literature have reported that variations in the flammability of different plant fibers can be attributed in 
part to the chemical composition of the fibers [15]. Cellulose is known to have high flammability due 

to its high crystallinity, whereas hemicellulose and lignin improves fire resistance; hemicellulose 

produced non-combustible gas whilst lignin produced char that reduces the amount of flammable 

volatiles released, slowing the chain branching reactions in the combustion cycle [15]. Hence 
alkalization affects flammability with the change in chemical composition it caused. Thermal 

degradation condition is crucial in the understanding of flammability properties of material. Thermal 

stability is one of the means by which natural fiber develop their inherent flame resistant [28]. 
Thermal degradation of natural fibers has always been a crucial factor for the development of 

natural fiber composites. The majority of natural fibers have low degradation temperatures of below 

200°C due to its cellulosic nature [16]. Alkalization has been reported to increase thermal stability as 
reported by Guduri et al. on flax fibers [17]. Liu et al. reported that the temperature at the maximum 

rate of decomposition obtained through weight percentage and derivative weight percentage for the 

Indian grass fibres increased with the increase in alkali concentration, thereby resulting in the 

improvement of the thermal stability of the fibre after alkali treatment [18]. However there has been 
contradicting results, as reported by Puglia et al. who indicated that thermal stability of the alkali-

treated flax fibres (Phormium tenax) decreased slightly as shown by the earlier degradation 

temperature as compared to untreated flax fibres [19]. Similar results have been reported by Zhu et al. 
based on their experiments on also flax fibres [20]. Research in thermal degradation of alkali treated 

kenaf composite is scarce, even more so on the kenaf fiber itself. 

This research work aims to study the effect of alkali treatment on the thermal degradation and 
mechanical strength of kenaf fibers. This preliminary study will lead to an in depth understanding of 

fire and mechanical behaviour of alkali treated kenaf composites, with regards to the main aim of this 

research which is the manufacture-ability, durability and other functional properties of kenaf 

composites.  

2.  Samples preparation and experimental procedure 

2.1.  Materials selection 
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Kenaf fibre with enzyme retting extraction grade was obtained from Dynamic Agrofarm Sdn Bhd 

(Pahang, Malaysia) at the harvesting age of 4 months. The extraction method was conducted by first 

spraying the kenaf stem with pectinase-rich enzyme and letting it rest for 24 hours. This was followed 

by manually peeling the kenaf bast from the core, and soaking it in a tank of water with the enzyme 
for 3 days, and finally dried under sunlight for 24 hours. The kenaf fibers were cut into an average 

length of 100 mm. 

2.2.  Alkali treatment 
Sodium hydroxide (analytical grade) pellets purchased from Merck were prepared of 3%, 6% and 9% 

concentration. The kenaf fibers of 100 mm length were separated into ten groups of 20 grams each and 

each group (except one) was immersed into the three different NaOH concentration for duration of 1, 

3 and 24 hours. The fibers were then washed with running water mixed with 0.1% acetic acid until a 
neutral pH is achieved, dried in a hot air oven at 60◦C for a period of 24 hours to remove the excess 

moisture.   

Table 1. Designation of kenaf fibers. 

Designation Treatment Soaking Time 

Raw - - 

NaOH3%1hr NaOH  3% 1 hour 

NaOH3%3hr NaOH  3% 3 hours 

NaOH3%24hr NaOH  3% 24 hours 

NaOH6%1hr NaOH  6% 1 hour 

NaOH6%3hr NaOH  6% 3 hours 

NaOH6%24hr NaOH  6% 24 hours 

NaOH9%1hr NaOH  9% 1 hour 

NaOH9%3hr NaOH  9% 3 hours 

NaOH9%24hr NaOH  9% 24 hours 

2.3.  Fiber bundle tensile test 

Kenaf fiber exists in fiber bundles. In accordance with ASTM D 3822, the tensile properties of fiber 

were determined with Shimadzu Ez-L10NX fiber tensile strength testing machine. The sample was set 

at fiber gauge length of 10 mm at the crosshead speed of 5 mm/min, and tested as in figure 4. For each 
of the ten sets of sample as in table 1, 20 fiber bundles with diameter less than 60 µm were chosen and 

tested individually to determine the average fiber bundle strength. Prior to the testing, average fiber 

bundle diameter were obtained from biological microscope. 
 

 

Figure 1. Fiber tensile strength testing machine. 
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2.4.  Thermogravimetric analysis (TGA) 

Thermogravimetric analysis is a thermal analysis techniques used to measure the mass change, thermal 

decomposition and thermal stability of material. Thermal gravimetric analysis was conducted using 

TGA Q500 machine. Samples weighing approximately 5 mg were subjected to pyrolysis in nitrogen 
environment to a maximum temperature of 650 °C at a heating rate of 20 °C/min. The weight loss was 

recorded in response to increasing temperature, with final residue yield on set of degradation 

temperature and number of degradation steps reported.  

3.  Results and discussion 

3.1.  Physical properties 

Kenaf fibers exist in a fiber bundle form. This is observed when the fiber was partially pulled apart. 

Figure 1 shows a visual representation and the magnified image of untreated kenaf fiber in its fiber 
bundle form obtained from a microbiological microscope of 100 µm magnification. From literature, 

micro scale fiber bundle exists in 50-100µm diameter [21]. A single kenaf fiber can only be obtained 

by breaking down the kenaf fiber bundles into elementary fibers, with diameter of 10-20 µm [21]. 
 

 

Figure 2. (a) kenaf fiber bundle (b) kenaf fiber bundle magnified at 100x. 

For the purpose of studying the fiber bundle strength, only those with diameter between 40 to 65 µm 

were chosen. The diameter of each fiber was measured at three different random locations to obtain 
the average value, as shown in figure 2. Fibers of more than 65 µm were observed to be observably 

intertwined and were separated for tensile strength test. 

 

Figure 3. Magnified fiber bundle image. 
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It was observed that as the alkali concentration increases, the fiber bundles were easier to separate, 

demonstrating  partial removal of hemicellulose and lignin as binding agent had occurred at the lower 

NaOH concentration and a more complete removal had occurred at the higher NaOH concentration. 

Fibers treated with higher concentration also showed a more severe physical change. Figure 3 shows a 
comparison of raw and kenaf fiber treated with concentration of 3%, 6% and 9% treated for 24 hours. 

During alkalization, almost all of hemicellulose and a certain amount of lignin, wax and oil covering 

the external surface of the fiber cell wall are removed, thus causing the fibers to appear dry and bristly. 
Hemicellulose is a semi crystalline polymer of glucose that acts as a binding agent to the cellulose 

strand. Hemicellulose is covered with lignin, an amorphous polymer which also acts as a binder. 

Removal of hemicellulose and partial removal of lignin caused the kenaf fibers to loose most of its 

binding agent [22]. Figure 3 showed a comparison of physical change shown by kenaf fibers soaked 
for duration of 24 hours. Samples soaked at the lesser time showed the same rough and bristly 

condition but a lesser severity.  

 

 

Figure 4. Untreated and NaOH treated kenaf fibers (24 hours). 

3.2.  Fiber bundle strength test 
The overall results for kenaf fibers treated for soaking time of 1 hour, 3 hours and 24 hours were 

summarized in table 2. All three soaking time shows a similar pattern, which is an increase of average 

maximum tensile strength of the fibers with increasing concentration of NaOH, up to 6% NaOH. 
However, NaOH concentration of 9% show a dramatic drop of strength, with value recorded even 

lower than that of the untreated fibers. Figure 5 shows tensile strength of untreated and treated kenaf 

fibers of various NaOH concentrations treated for 1 hour. 

Table 2. Average tensile strength (MPa). 

Soaking Time Raw NaOH 3% NaOH 6% NaOH 9% 

0 hour 330.42 - - - 

1 hour - 358.89 407.72 309.84 
3 hours - 367.39 412.29 297.65 

24 hours - 330.25 386.37 267.54 

 

This increased tensile strength with the increase of NaOH concentration may be explained by the 
improved uniformity of cellulose structure after the removal of the amorphous and semi-crystalline 

hemicellulose and lignin [18]. The aligned fibrils promotes an even load distribution in the fibers, and 

a higher crystallinity index leads to a better packing of cellulose chains [11]. The dramatic drop of 
strength could be the result of the damage of fiber cell wall caused by high concentration of NaOH, as 

a similar scenario was observed by P. Methacanon [10]. As reported by Mwaikambo and Ansell [23], 



6

1234567890‘’“”

International Conference on Aerospace and Mechanical Engineering (AeroMech17) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 370 (2018) 012048 doi:10.1088/1757-899X/370/1/012048

 

 
 

 

 

 

a very high concentration of NaOH would certainly damage the fiber and consequently reduce the 

tensile strength of the fiber. 

 

 

Figure 5. Tensile strength of untreated and treated kenaf fibers of various NaOH concentrations 

treated for 1 hour. 

3.3.  Thermogravimetric analysis (TGA) 
Results from the TGA run is as shown in figure 6, and a clearer presentation of degradation is as 

presented in the derivative thermogravimetric graph (DTG) in figure 7. Peaks represent the rate of 

weight degradation (%/min). Untreated kenaf fibers started to lose weight earlier than the other 

samples as shown by the curve below 100
o
C. This is attributed to the higher moisture content on 

untreated fibers due to the presence of hemicellulose.  

 

Figure 6. TGA of raw and treated kenaf fibers. 
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Initial result on thermal stability is characterized by the temperature at which 15% weight loss 

occurred, referred to as T15%. The T15% for raw kenaf is 292.78
o
C as compared to 308.57

o
C for kenaf 

treated with NaOH 9%, with NaOH 3% and NaOH 6% having T15% values in between. The higher 

temperature for 15% weight loss is an early indication of thermal stability of treated as compared to 
the untreated kenaf fibers [24].  

 

Table 3. Data analysis from TGA and DTG. 

Designation Treatment T15% (oC) 
Peak height  

(maximum weight 

loss)(wt%/min) 

Char residue  
at 636.4oC 

(%) 

Total weight 
decomposition 

(%) 

Raw NIL 292.78 30.653 7.526 65.52 

NaOH3%1hr NaOH 3% 297.82 18.195 15.778 48.18 

NaOH6%1hr NaOH 6% 301.3 22.275 21.978 59.98 

NaOH9%1hr NaOH 9% 308.57 25.724 14.254 59.55 

       

 

Figure 7. DTG of raw and treated kenaf fibers. 

DTG curve showed that whilst treated kenaf fiber exhibits single step degradation, raw kenaf fibers 

displayed twostep degradation, with the first peak occurring at 270
 o

C. In this temperature range, 
degradation is associated with hemicellulose and some parts of lignin. Treated kenaf fibers did not 

experience loss of weight at 270
o
C, which is explained by the removal of hemicellulose during 

alkalization [25]. DTG graph of fibers treated with 9% NaOH showed a complete removal of 
hemicellulose as no peak is observed. 

The second stage is associated with degradation of cellulose and lignin. Peaks at the range of 320 to 

375
o
C exhibits decomposition of cellulose, and a wider range of up to 420

o
C is for the decomposition 

of lignin [23]. DTG curve showed NaOH treated fibers (3% and 6%) with an earlier degradation 

temperature than untreated fibers. This indication of thermal instability might be due to the removal of 

fiber cell walls, which reduce the thermal protection of the treated fibres. The exposed cellulose fibrils 

experienced direct heat without any layering from the cell wall [26]. Cellulose will degrade through a 
process called pyrolisis, forming levoglucosan which will decompose to produce flammable volatiles 

[14]. Another factor causing thermal instability in treated fiber is the crystallinity. For cellulosic fibers 
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in particular, higher levels of crystallinity results in higher levels of levoglucosan during pyrolysis and 

consequently increased flammability [15]. This is in accordance to reports of increased flammability 

for fibers with higher cellulose content [15]. 

The peaks on the DTG represent the maximum rate of weight loss. Treated fibers have a much 
lesser rate of degradation due to the removal of most cementing components. By treating the fibers 

with NaOH 3%, the maximum rate of weight loss is reduced by almost half from 30.653 wt%/min to 

18.196 wt.%/min, indicating thermal stability [27]. Similarly, total decomposition weight, as obtained 
from the area under the DTG curve, also showed a lesser decomposition prior to pre-treatment of 

fibers. However, the degradation rate is observed to increase as NaOH concentration used increased. 

This may be due to the removal of lignin, which leads to lesser char in the fibers to retard degradation. 

4.  Conclusion 
Kenaf fibers were treated at various concentrations of sodium hydroxide and soaking time to study the 

effect of alkali treatment on the physical, mechanical and thermal properties of kenaf fibers. From this 

study, it can be concluded that: 
1. Tensile properties of fiber bundle increase with NaOH treatment of up to NaOH 

concentration of 6%. Removal of impurities improves the uniformity of the fibers resulting in an 

increase in strength. However a high concentration of 9% will degrade the strength of fiber cell 
walls. Duration of soaking of 1 to 3 hours is sufficient for a good treatment. 

2. Absence of hemicellulose in treated fibers is observed by the one step degradation instead of 

a two-step degradation depicted by raw fibers. The peak at 270
o
C correlates with the 

decomposition temperature of hemicellulose.  
3. Treated fiber showed a slower rate of degradation and reduced total weight decomposition 

due to the absence of hemicellulose and lignin. 

4. Exposed cellulose structures and diminishing fiber cell wall of alkali treated fibers 
accelerated degradation process. High crystallinity of treated fiber also caused formation of 

levoglucosan, decreasing thermal stability in fibers. This showed that fire resistance of fibres may 

not be improved with alkali treatment. Therefore, it is suggested that further study on the effect of 

fire retardant on thermal stability of the kenaf fibres is conducted. 
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