

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLOGY

FINAL EXAMINATION JANUARY 2017 SEMESTER

COURSE CODE

: LGB10403

COURSE NAME

: ENGINEERING MATHEMATICS 2

PROGRAMME NAME

(FOR MPU: PROGRAMME LEVEL)

: BACHELOR OF ENGINEERING TECHNOLOGY (HONS)

IN MARINE ENGINEERING

BACHELOR OF ENGINEERING TECHNOLOGY (HONS)

IN NAVAL ARCHITECTURE & SHIPBUILDING

DATE

: 03/07/2017 MON

TIME

: 9.00 AM - 12.00 PM

DURATION

: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please read CAREFULLY the instructions given in the question paper.
- 2. This question paper has information printed on both sides.
- This question paper consists of TWO (2) sections; Section A and Section B. Answer ALL questions in Section A and THREE (3) questions from Section B.
- 4. Please write yours answers on the answer booklet provided.
- 5. Write your answers only in BLACK or BLUE ink.
- 6. Answer all questions in English.

THERE ARE 6 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALLFIVE questions.

Please use the answer booklet provided.

Question 1

(a) Differentiate $5y - 6xy = y^2 + 6$ with respect to x and y respectively using implicit differentiation.

(4 marks)

(b) If $y = \tan^{-1} \frac{3}{t^2}$, determine $\frac{dy}{dt}$.

(4 marks)

Question 2

(a) Solve $\int \sin^4 \theta d\theta$.

(3 marks)

(b) Let
$$f(x) = \begin{cases} x-2, & x \ge 2 \\ 2-x, & x < 2 \end{cases}$$
 and $g(x) = x(3-x)$. Determine the integration
$$\int_0^5 (f(x) + g(x)) dx.$$

(5 marks)

Question 3

(a) Determine the real part and imaginary part for $\frac{MP}{N}$ if given M = 4 - 5i, N = 2 + 6i and P = 3i

(4 marks)

(b) Express z = -3 - 4i in exponential form.

(4 marks)

Question 4

(a) Distinguish homogeneous second order differential equation and nonhomogeneous second order differential equation.

(2 marks)

(b) Solve the differential equation $\frac{dy}{d\theta} = \sec \theta + y \tan \theta$ using linear first order differential equation, given the boundary condition y = 1 when $\theta = 0$.

(6 marks)

Question 5

(a) Show that by using definition of Laplace transform for $f(t) = 5e^{4t}$ is $\frac{5}{s-4}$.

(4 marks)

(b) Solve the following Laplace transform using of first shifting properties.

i.
$$f(t) = 5e^{-3t} \sin 2t$$

(2 marks)

ii.
$$g(t) = 2t^4 e^{3t}$$

(2 marks)

JANUARY 2017 CONFIDENTIAL

SECTION B (Total: 60 marks)

INSTRUCTION: Total questions are FIVE but answer only THREE questions. Please use the answer booklet provided.

Question 6

(a) A conical water tank with vertex down has a radius of 10 feet at the top and is 24 feet high. If water flows out of the tank at a rate of $20 \, ft^3$ /min, how fast is the depth of the water decreasing when the water is 16 feet dep? Hint: $v = \frac{1}{3} \pi r^2 h$.

(10 marks)

(b) Given a closed triangle box with volume of $72m^3$. The length of the box is twice its width. Determine the minimum area of the box.

(10 marks)

Question 7

- (a) Evaluate the definite integrals $\int_{1}^{4} \sqrt{1+x^3} dx$ using
 - i. Simpson's Rule.
 - ii. Trapezoidal Theorem.

In each of the approximate methods use 6 intervals and give the answer correct to 3 decimal places

(10 marks)

(b) Determine the area bounded the given curves, $f(x) = x^2 + 3$ and g(x) = 7 - 3x.

(10 marks)

JANUARY 2017 CONFIDENTIAL

Question 8

(a) A delta-connected impedance Z_A in ohm unit (electronic unit) is given by $Z_A = Z_1 Z_2 + Z_1 Z_2 Z_3 + \frac{Z_1}{Z_3}.$ Determine Z_A in both trigonometry and polar form if given $Z_1 = (1-3j), Z_2 = (-2-5j) \text{ and } Z_3 = (-3-j4).$

(10 marks)

(b) Use De Moivre's theorem to determine:

i.
$$[-2+j3]^6$$

ii.
$$\sqrt{5+j12}$$

Leave the answer in polar form.

(10 marks)

Question 9

(a) Determine the general solution and particular solution of $9\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 4y = 3x - 1$ when x = 0, y = 0 and $\frac{dy}{dx} = -\frac{4}{3}$.

(12 marks)

(b) $L \frac{d^2i}{dt^2} + R \frac{di}{dt} + \frac{1}{C}i = 0$ is equation representing in electric circuit. If inductance L is 0.25, capacitance C is 29.76×10^{-6} farads and R is 250 ohms, solve the equation for i given the boundary condition that when t = 0, i = 0 and $\frac{di}{dt} = 34$.

(8 marks)

JANUARY 2017 CONFIDENTIAL

Question 10

(a) Use Laplace transform to solve the differential equation $2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 3y = 0$, given that when y(0) = 4 and $\frac{dy}{dx} = 9$.

(10 marks)

(c) Determine the inverse of Laplace transform $F(s) = \frac{s-3}{s^2 - 4s - 140}$.

(10 marks)

END OF EXAMINATION PAPER

LGB 10403

TRIGONOMETRY IDENTITIES

FUNDAMENTAL IDENTITIES	FORMULAS FOR NEGATIVES	
$\csc\theta = \frac{1}{\sin\theta}$	$\sin(-\theta) = -\sin\theta$	
$\sec\theta = \frac{1}{\cos\theta}$	$\cos(-\theta) = \cos\theta$	
$\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$	$\tan(-\theta) = -\tan\theta$	
$\cos^2\theta = \frac{1}{2}(1+\cos 2\theta)$	$\csc(-\theta) = -\csc\theta$	
$\sin^2\theta + \cos^2\theta = 1$	$\sec(-\theta) = \sec \theta$	
$1 + \tan^2 \theta = \sec^2 \theta$	$\cot(-\theta) = -\cot\theta$	
$1 + \cot^2 \theta = \csc^2 \theta$	$\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$	

ADDITION FORMULAS	SUBTRACTION FORMULAS	
$\sin(A+B) = \sin A \cos B + \cos A \sin B$	$\sin(A-B) = \sin A \cos B - \cos A \sin B$	
$\cos(A+B) = \cos A \cos B - \sin A \sin B$	$\cos(A-B) = \cos A \cos B + \sin A \sin B$	
$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$	$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$	

HALF-ANGLE FORMULAS	DOUBLE-ANGLE FORMULAS	
$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$	$\sin 2\theta = 2\sin\theta\cos\theta$	
$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	
$\cos \frac{\pi}{2} = \pm \sqrt{\frac{\pi}{2}}$	$\dots = 1 - 2\sin^2\theta$	
	$\dots = 2\cos^2\theta - 1$	
$\tan \frac{\theta}{2} = \frac{1 - \cos \theta}{\sin \theta} = \frac{\sin \theta}{1 + \cos \theta}$	$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$	
$2 \sin \theta 1 + \cos \theta$	$1-\tan^2\theta$	

PRODUCT-TO-SUM FORMULAS	SUM-TO-PRODUCT FORMULAS	
$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$	$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$	
$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$	$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$	
$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$	$\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}$	

LGB 10403

DIFFERENTIATION

STANDARD FORM	GENERAL FORM	
$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\sin f(x)) = f'(x)\cos f(x)$	
$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(\cos f(x)) = -f'(x)\sin f(x)$	
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\tan f(x)) = f'(x)\sec^2 f(x)$	
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}(\csc f(x)) = -f'(x)\csc f(x)\cot f(x)$	
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}(\sec f(x)) = f'(x)\sec f(x)\tan f(x)$	
$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\frac{d}{dx}(\cot f(x)) = -f'(x)\csc^2 f(x)$	

EXPONENTIAL FUNCTION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}e^{x}=e^{x}$	$\frac{d}{dx}e^{f(x)}=f'(x)e^{f(x)}$

LOGARITHMIC FUNCTION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}\ln x = \frac{1}{x}$	$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$

LGB 10403

INTEGRATION

STANDARD FORM	GENERAL FORM Where : $f(x) = ax + b$
$\int \cos x dx = \sin x + c$	$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + c$
$\int \sin x dx = -\cos x + c$	$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + c$
$\int \sec^2 x dx = \tan x + c$	$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + c$
$\int \sec x \tan x dx = \sec x + c$	$\int \sec f(x)\tan f(x)dx = \frac{\sec f(x)}{f'(x)} + c$
$\int \csc x \cot x dx = -\csc x + c$	$\int \csc f(x) \cot f(x) dx = \frac{-\csc f(x)}{f'(x)} + c$
$\int \csc^2 x dx = -\cot x + c$	$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + c$
$\int \tan x dx = \ln \sec x + c$	$\int \tan x dx = \frac{\ln \sec f(x) }{f'(x)} + c$
$\int \sec x dx = \ln \left \sec x + \tan x \right + c$	$\int \sec x \ dx = \frac{\ln \left \sec f(x) + \tan f(x) \right }{f'(x)} + c$
$\int \cot x dx = \ln \sin x + c$	$\int \cot x dx = \frac{\ln \left \sin f(x) \right }{f'(x)} + c$
$\int \csc x dx = -\ln \csc x + \cot x + c$	$\int \csc x dx = \frac{-\ln\left \csc f(x) + \cot f(x)\right }{f'(x)} + c$

EXPONENTIAL FUNCTION

STANDARD FORM	GENERAL FORM Where : $f(x) = ax + b$
$\int e^x dx = e^x + c$	$\int e^{f(x)} dx = \frac{e^{f(x)}}{f'(x)} + c$

LOGARITHMIC FUNCTION

STANDARD FORM	GENERAL FORM Where: $f(x) = ax + b$
$\int \frac{1}{x} dx = \ln x + c$	$\int \frac{1}{f(x)} dx = \frac{\ln f(x) }{f'(x)} + c$

LGB 10403

INVERSE TRIGONOMETRIC FUNCTION FUNCTION

$$\frac{d}{dx}\left[\sin^{-1}\left(\frac{x}{a}\right)\right] = \frac{1}{\sqrt{a^2 - x^2}}$$

$$\frac{d}{dx}\left[\cos^{-1}\left(\frac{x}{a}\right)\right] = -\frac{1}{\sqrt{a^2 - x^2}}$$

$$\frac{d}{dx}\left[\tan^{-1}\left(\frac{x}{a}\right)\right] = \frac{a}{a^2 + x^2}$$

$$\frac{d}{dx}\left[\csc^{-1}\left(\frac{x}{a}\right)\right] = -\frac{a}{x\sqrt{x^2 - a^2}}$$

$$\frac{d}{dx}\left[\sec^{-1}\left(\frac{x}{a}\right)\right] = \frac{a}{x\sqrt{x^2 - a^2}}$$

$$\frac{d}{dx}\left[\cot^{-1}\left(\frac{x}{a}\right)\right] = -\frac{a}{a^2 + x^2}$$

FIRST AND SECOND ORDER DIFFERENTIAL EQUATION

If the roots of the auxiliary equation are:

(i) real and different, say $m = \alpha$ and $m = \beta$, then the general solution is

$$y = Ae^{\alpha x} + Be^{\beta x}$$

(ii) real and equal, say m = α twice, then the general solution is

$$y = (Ax + B)e^{\alpha x}$$

(iii) **complex**, say $m = \alpha \pm j\beta$, then the general solution is

$$y = e^{\alpha x} \{ A \cos \beta x + B \sin \beta x \}$$

LGB 10403

Table 51.1 Form of particular integral for different functions

Туре	Straightforward cases Try as particular integral:	'Snag' cases Try as particular integral:	See problem
(a) $f(x) = a$ constant	v=k	v=kx (used when C.F. contains a constant)	1, 2
(b) $f(x) = \text{polynomial (i.e.}$ $f(x) = L + Mx + Nx^2 + \cdots$ where any of the coefficients may be zero)	$v = a + bx + cx^2 + \cdots$		3
(c) $f(x) = \text{an exponential function}$ (i.e. $f(x) = Ae^{ax}$)	v=ke ^{ax}	 (i) v=kxe^{ax} (used when e^{ax} appears in the C.F.) (ii) v=kx²e^{ax} (used when e^{ax} and xe^{ax} both appear in the C.F.) 	4,5
(d) $f(x) = a$ sine or cosine function (i.e. $f(x) = a \sin px + b \cos px$, where a or b may be zero)		$v = x(A \sin px + B \cos px)$ (used when $\sin px$ and/or $\cos px$ appears in the C.F.)	7,8
(e) $f(x) = a \text{ sum e.g.}$ (i) $f(x) = 4x^2 - 3\sin 2x$ (ii) $f(x) = 2 - x + e^{3x}$	(i) $v = ax^2 + bx + c$ $+ d \sin 2x + e \cos 2x$ (ii) $v = ax + b + ce^{3x}$		9
(f) $f(x) = a$ product e.g. $f(x) = 2e^x \cos 2x$	$v = e^x (A \sin 2x + B \cos 2x)$		10