

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLOGY

FINAL EXAMINATION SEPTEMBER 2016 SEMESTER

COURSE CODE

: LGB 21903

COURSE NAME

: DYNAMICS

PROGRAMME NAME

(FOR MPU: PROGRAMME LEVEL)

: BACHELOR OF ENGINEERING TECHNOLOGY(HONS) IN

MARINE ENGINEERING

DATE

: 19 JANUARY 2017

TIME

: 09.00 AM - 12.00 AM

DURATION

: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer THREE (3) questions only.
- 6. Answer all questions in English.
- 7. Formulae sheet has been appended for your reference.

THERE ARE 4 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

SEPTEMBER 2016 CONFIDENTIAL

SECTION A (Total: 40 marks)

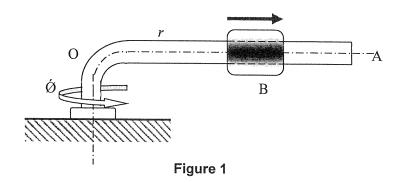
INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

Question 1

A particle move along the X axis with an initial velocity, $v_x = 90$ km/hr at the origin when t = 0. For the first 4 seconds, it has no acceleration and thereafter it is acted upon by a retarding force which gives it a constant acceleration $a_x = -10$ m/s².

(a) Calculate the velocity as at t = 5 seconds and t = 9 seconds

(8 marks)


- (b) Determine the X coordinate of the particle as at t = 5 seconds and t = 9 seconds (8 marks)
- (c) Find the maximum positive *X* coordinate reached by the particle.

(4 marks)

Question 2

The rod OA is rotating in the horizontal plane such that $\emptyset = t^3$ rad has shown in Figure 1. At the same time, the collar B is sliding outward along OA so that $r = 100t^2$ mm. If in both cases t is in seconds, determine the velocity and acceleration of the collar when t = 1 s.

(20 marks)

LGB 21903

DYNAMICS

Page 1 of 3

SECTION B (Total: 60 marks)

INSTRUCTION: Answer only THREE (3) questions.

Please use the answer booklet provided.

Question 3

A 10-kg collar slides without friction along a vertical rod has shown in Figure 2. The spring attached to the collar has an un-deformed length of 100mm and a spring constant of 600 N/m. If the collar is released from rest in position 1, determine its velocity after it has moved 150mm to position 2. (20 marks)

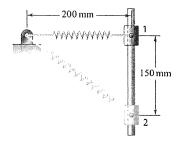


Figure 2

Question 4

The 50-g bullet travelling at 600 m/s strikes the 4-kg block centrally and is embedded within it has shown in Figure 3(a). If the block is sliding on a smooth horizontal plane with a velocity of 12 m/s in the direction shown in Figure 3(b) just before the impact,

(a) Determine the velocity *v* of the block and bullet combined after impact.

(16marks)

(b) Calculate its direction θ immediately after impact.

(4 marks)

Figure 3 (a)

Figure 3 (b)

LGB 21903

DYNAMICS

Page 2 of 3

SEPTEMBER 2016 CONFIDENTIAL

Question 5

The pinion A of the hoist motor drives gear B which is attached to the hoisting drum has shown in Figure 4. The load L is lifted from its rest position and acquires an upward velocity of 2 m/s in a vertical rise of 0.8 m with constant acceleration. As the load passes as at this position;

Calculate the acceleration of point C on the cable in contact with the drum. (a)

(9 marks)

(b) Determine the angular velocity and angular acceleration of the pinion A.

(11 marks)

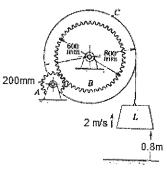


Figure 4

Question 6

The mass on two rotors in planes B and C has shown in Figure 5 are unbalanced weight for the shaft. Determine the masses to be added on the rotor in planes A and D at radius 50mm which will produce static and dynamics balance. Given the mass of B is 5.5kg and C is 2.5kg.

> (20 marks) D

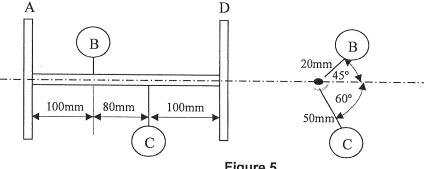


Figure 5

END OF EXAMINATION PAPER

LGB 21903 **DYNAMICS** Page 3 of 3

Formulae in Dynamics Applications

1. Particle in Motion;

$$2 a s = \Delta v^2$$

$$v = r' u_r + r \varnothing' u_\varnothing$$

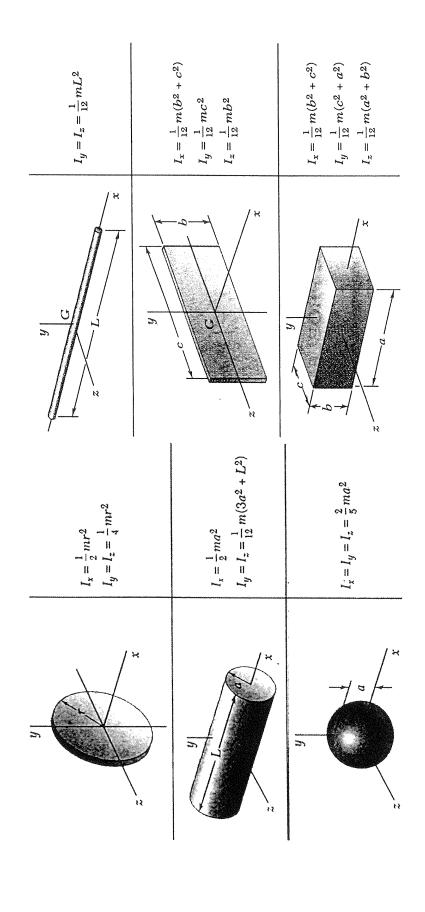
$$a = (r'' - r\emptyset'^2) ar + (r\emptyset'' + 2r'\emptyset') a_{\emptyset}$$

2. The force action at Block A;

$$\sum F_A = m \, a_A$$

- 3. Total power, P = F.v;
- 4. Conservation of Momentum;

the *n*- direction gives; $m_1(v_1)_n + m_2(v_2)_n = m_1(v_1)_n + m_2(v_2)_n$


the *t*-direction; $m_1(v_1)_t = m_1(v_1')_t$

The coefficient of restitution relationship; $e = (v_2)'_n - (v_1)'_n$

$$(V_1)_n - (V_2)_n$$

- 5. The kinetic energy; $T = \frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2$
- 6. The potential energy; $V_e = \frac{1}{2} k \delta_x^2$; $V_g = mgh$
- 7. Conservation of Work & Energy; $T_1 + V_1 = T_2 + V_2$
- 8. Principle of Work & Energy; $T_1 + U_{1-2} = T_2$

Moments of Inertia of Common Geometric Shapes

