

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLOGY

FINAL EXAMINATION SEPTEMBER 2016 SEMESTER

COURSE CODE

: LGB 10303

COURSE NAME

: ENGINEERING MATHEMATICS 1

PROGRAMME NAME

: BACHELOR

DATE

: 18 JANUARY 2017

TIME

: 9.00 AM - 12.00 PM

DURATION

: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections; Section A and Section B.
- 4. Answer ALL questions in Section A. For Section B, answer THREE (3) questions only.
- 5. Please write your answers in the answer booklet provided.
- 6. Answer all questions in English.
- 7. Answers should be written in blue or black ink except for sketching, graphic and illustration.

THERE ARE 6 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

A concrete mixture contains seven parts by volume of ballast, four parts by volume of sand and two parts by volume of cement. Calculate:

- (a) the percentage of each of these three constituents correct to the nearest 1%.
- (b) the mass of cement in a two tonne dry mix, correct to 1 significant figure.

(8 marks)

Question 2

(a) State the types of roots for the following cases:

i.
$$b^2 - 4ac < 0$$

ii.
$$b^2 - 4ac = 0$$

iii.
$$b^2 - 4ac > 0$$

(3 marks)

(b) If one of the factors of the equation $x^2 + 8x + p = 0$ is 3 times of another factor, interpret the value of p.

(5 marks)

Question 3

Simplify the following equations:

(a)
$$\frac{\sqrt[3]{54x^5}}{\sqrt[3]{2x^2}}$$

(3 marks)

$$\frac{\log_5 8 \times \log_3 25}{\log_{\sqrt{3}} 4}$$

(5 marks)

Question 4

Prove each trigonometric identity:

(a)
$$\cos(x + y) \cos(x + y) = (\cos x \cos y)^2 - (\sin x \sin y)^2$$

(2 marks)

(b)
$$\frac{\sin(x-y)}{\cos x \cos y} = \tan x - \tan y$$

(3 marks)

(c)
$$\cos\left(x+\frac{\pi}{6}\right)-\sin\left(x+\frac{2\pi}{3}\right)=0.$$

(3 marks)

Question 5

By using suitable rules, solve the following integrals:

(a)
$$\int \left(\frac{4x^2 - \sqrt[3]{x} + 6x^5}{x^4}\right) dx$$

(4 marks)

(b)
$$\frac{d}{dx} \left(\frac{4\sin 5x}{5x^4} \right)$$

(4 marks)

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE(3) questions only.

Please use the answer booklet provided.

Question 6

Two cubic polynomials are defined by $f(x) = x^3 + (a-3)x + 2b$ and $g(x) = 3x^3 + x^2 + 5ax + 4b$, where a and b are constants.

(a) Given that f(x) and g(x) have a common factor of (x-2), show that a = -4.

(8 marks)

(b) Find the value of b.

(2 marks)

(c) Using the values of a and b, factorise f(x) fully.

(5 marks)

(d) Hence, show that f(x) and g(x) have two common factors.

(5 marks)

Question 7

(a) Show that $\log_y x = \frac{1}{\log_x y}$.

(2 marks)

(b) Evaluate the possible values of x that satisfy $2(\log_9 x + \log_x 9) = 5$.

(8 marks)

(c) Show that $9 \sinh x - \cosh x = 4e^x - 5e^{-x}$.

(3 marks)

(d) Given that $9 \sinh x - \cosh x = 8$. Find the exact value of $\tanh x$.

(7 marks)

Question 8



Figure 1

- (a) Figure 1 shows the angle of depression of a ship viewed at a particular instant from the top of a 75m vertical cliff is 30°.
 - i. Find the distance of the ship from the base of the cliff at this instant.

(2 marks)

ii. The ship is sailing away from the cliff at constant speed and 1 minute later its angle of depression from the top of the cliff is 20° . Determine the speed of the ship in km/h.

(8 marks)

(b) Given
$$y = \frac{1}{2}\cos 3(x + \pi)$$
.

i. State the amplitude, period and phase shift of y.

(4 marks)

ii. Sketch the graph for two cycles beginning with x = 0.

(6 marks)

Question 9

- (a) Determine the slope of the tangent to the graph of $f(x) = \frac{\sqrt{x}}{2}$. by using:
 - i. basic rule

(2 marks)

ii. definition of derivative

(8 marks)

(b) Evaluate:

i.
$$\int \left(\sqrt{1-x} + \frac{1}{\sqrt{1-x}} - \frac{1}{(1-x)^2} \right) dx$$
.

(3 marks)

ii. $\int \left(e^{(\sin^2(\tan x))} \right) dx \ .$

(3 marks)

(4 marks)

END OF EXAMINATION PAPER

DIFFERENTIATION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\sin f(x)) = f'(x)\cos f(x)$
$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(\cos f(x)) = -f'(x)\sin f(x)$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\tan f(x)) = f'(x)\sec^2 f(x)$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}(\csc f(x)) = -f'(x)\csc f(x)\cot f(x)$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}(\sec f(x)) = f'(x)\sec f(x)\tan f(x)$
$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\frac{d}{dx}(\cot f(x)) = -f'(x)\csc^2 f(x)$

EXPONENTIAL FUNCTION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}e^{x}=e^{x}$	$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$

LOGARITHMIC FUNCTION

STANDARD FORM	GENERAL FORM
$\frac{d}{dx}\ln x = \frac{1}{x}$	$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$

INTEGRATION

STANDARD FORM	GENERAL FORM Where: $f(x) = ax + b$
$\int \cos x dx = \sin x + c$	$\int \cos f(x) dx = \frac{\sin f(x)}{f'(x)} + c$
$\int \sin x dx = -\cos x + c$	$\int \sin f(x) dx = \frac{-\cos f(x)}{f'(x)} + c$
$\int \sec^2 x dx = \tan x + c$	$\int \sec^2 f(x) dx = \frac{\tan f(x)}{f'(x)} + c$
$\int \sec x \tan x dx = \sec x + c$	$\int \sec f(x) \tan f(x) dx = \frac{\sec f(x)}{f'(x)} + c$

$\int \csc x \cot x dx = -\csc x + c$	$\int \csc f(x) \cot f(x) dx = \frac{-\csc f(x)}{f'(x)} + c$
$\int \csc^2 x dx = -\cot x + c$	$\int \csc^2 f(x) dx = \frac{-\cot f(x)}{f'(x)} + c$

EXPONENTIAL FUNCTION

STANDARD FORM	GENERAL FORM
	Where: $f(x) = ax + b$
$\int e^{x} dx = e^{x} + c$	$\int e^{f(x)} dx = \frac{e^{f(x)}}{f'(x)} + c$

LOGARITHMIC FUNCTION

STANDARD FORM	GENERAL FORM Where: $f(x) = ax + b$
$\int \frac{1}{x} dx = \ln x + c$	$\int \frac{1}{f(x)} dx = \frac{\ln f(x) }{f'(x)} + c$

HYPERBOLIC FUNCTION

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

TRIGONOMETRIC IDENTITIES

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$