

# UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF MARINE ENGINEERING TECHNOLOGY

## FINAL EXAMINATION SEPTEMBER 2016 SEMESTER

COURSE CODE

: LEB 10403

**COURSE NAME** 

: DIGITAL ELECTRONIC

PROGRAMME NAME

(FOR MPU: PROGRAMME LEVEL)

: BACHELOR OF MARINE ELECTRICAL ELECTRONIC

DATE

: 16<sup>TH</sup> JANUARY 2017

TIME

: 2.00PM

**DURATION** 

: 3 HOURS

## **INSTRUCTIONS TO CANDIDATES**

- 1. Please CAREFULLY read the instructions given in the question paper.
- 2. This question paper has information printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections; Section A and Section B.
- 4. Answer ALL questions in Section A. For Section B, answer THREE (3) questions WITH AT LEAST ONE (1) question from question 4 or question 5.
- 5. Please write your answers on the answer booklet provided.
- 6. Answer all questions in English language ONLY.

THERE ARE 7 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

**SECTION A (Total: 40 marks)** 

INSTRUCTION: Answer ALL questions.
Please use the answer booklet provided.

#### **Question 1**

- a) Convert the binary number below to their decimal equivalent. (Course Learning Outcome 1)
  - i. 01101011<sub>2</sub>
  - ii. 10010101<sub>2</sub>
  - iii. 11011110<sub>2</sub>

[6 marks]

- b) Convert the decimal number below to their BCD equivalent. (Course Learning Outcome 1)
  - i. 187<sub>10</sub>
  - ii. 962<sub>10</sub>, and
  - iii. 529<sub>10</sub>

[6 marks]

c) Rewrite **Table Q1 (c)** below in you answer booklet. Fill in the table by indicating the 8 – bit sign – and – magnitude, 1's complement and 2's complement representation for each of the decimal number. (Course Learning Outcome 1)

Table Q1 (c)

| Decimal | Sign – and –<br>magnitude | 1's complement | 2's complement |
|---------|---------------------------|----------------|----------------|
| + 30    |                           |                |                |
| + 13    |                           |                |                |
| - 6     |                           |                |                |
| - 15    |                           |                |                |

[8 marks]

## Question 2

a. Simplify the following Boolean expressions using Boolean algebra. (Course Learning Outcome 2)

i. 
$$W = (\bar{A} + B)C + ABC$$

[3 marks]

ii. 
$$X = AB + (\bar{A} + \bar{B})C + AB$$

[3 marks]

- b. Given the function F (A,B,C) =  $(A + B)(C + \overline{B})$ (Course Learning Outcome 2)
  - i. Convert the given function to a standard sum of product (SOP) form.

[4 marks]

ii. Construct the truth table for the standard SOP form.

[4 marks]

iii. Draw the Karnaugh Map and express the simplified equation, and

[3 marks]

iv. Sketch the logic circuit of the simplified equation in (iii).

[3 marks]

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) ONLY from FOUR (4) questions.

Please use the answer booklet provided.

## Question 3

a) Sketch the corresponding logic circuit diagram for the following expressions using **ONLY** AND gate, OR gate and INVERTER. (Course Learning Outcome 2 & 3)

i. 
$$X = \overline{AB(C + \overline{D})}$$

[4 marks]

ii. 
$$Y = \overline{M + N} + (\overline{P}Q)$$

[4 marks]

b) Derive and simplify the expression from the corresponding logic circuit diagram in Figure Q3 (b). (Course Learning Outcome 2 & 3)



[2 marks]

c) Derive and simplify the expression from the corresponding logic circuit diagram in **Figure Q3 (c)**.

(Course Learning Outcome 2 & 3)



Figure Q3 (c)

[2 marks]

d) Draw the following expression **ONLY** by using **NAND gates**. (Course Learning Outcome 2 & 3)

i. 
$$X = ABC$$

ii. 
$$Y = \overline{EF} + \overline{GH}$$

[8 marks]

#### Question 4

a) Produce all outputs shown in Table: 1 into a standard Sum-of-Product (SOP) format. (Course Learning Outcome 3)

| Χ | Υ | Z | Q |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

Table: 1

[5 marks]

- b) Given the function  $F(A,B,C) = A\overline{C} + A\overline{BC} + A\overline{B} + A\overline{B} + A\overline{B} + ABC + ABC$ (Course Learning Outcome 4)
  - i) Produce the truth table for the output, F

[3 marks]

ii) Use the Karnaugh Map and write the simplified Boolean expression

[3 marks]

iii) Draw the basic logic circuit for the simplified expression in part (b)(ii)

[3 marks]

iv) Express the output F, in sum-of-products (SOP) form, and

v) Redraw the circuit in part (c) using NAND gates only.

[3 marks]

[3 marks]

### Question 5

a) Digital bits transmission can be done in serial or parallel. Describe the main differences between synchronous and asynchronous counters. (Course Learning Outcome 5)

[4 marks]

- b) Design MOD 7 synchronous count up counter by using JK flip flop. Take the negative going transition clock (NGT) as the input. The design should include the following: (Course Learning Outcome 5)
  - i. The state diagram of the counter

[4 marks]

ii. The state transition table

[4 marks]

iii. K-maps to simplify each JK signal, and

[4 marks]

iv. Design the complete counter circuit.

[4 marks]

#### Question 6

- a) Design MOD 8 asynchronous count up counter by using JK flip flop. The design should include the followings: (Course Learning Outcome 5)
  - i. The state transition diagram

[4 marks]

ii. K-maps to simplify each JK signal

[4 marks]

iii. Design the complete counter circuit

[4 marks]

b) Describe the main operation of 2-to-4 line decoder (active high) which has variable A and B as its input. Produce the followings: (Course Learning Outcome 3)

i. A complete truth table, and

[4 marks]

ii. Schematic diagram of the decoder.

[4 marks]

**END OF QUESTIONS**