On the Solutions of the Equation $x^3 + Ax = B$ in \mathbb{Z}_3^* with Coefficients from \mathbb{Q}_3

I. M. Rikhsiboev¹, A. Kh. Khudoyberdiyev², T. K. Kurbanbaev², K. K. Masutova²

ABSTRACT

Recall that in [1] it is obtained the criteria solvability of the Equation $x^3 + ax = b$ in $\mathbb{Z}_p^*, \mathbb{Z}_p$ and \mathbb{Q}_p for $p>3$. Since any p-adic number x has a unique form $x = p^kx^*$, where $x^* \in \mathbb{Z}_p^*$ and $k \in \mathbb{Z}_p$ in [1] it is also shown that from the criteria in \mathbb{Z}_p^* it follows the criteria in \mathbb{Z}_p and \mathbb{Q}_p. In this paper we provide the algorithm of finding the solutions of the Equation $x^3 + ax = b$ in \mathbb{Q}_3 with coefficients from \mathbb{Q}_3.

KEYWORDS : p-Adic Numbers; Solvability of Equation; Congruence