On the Solutions of the Equation $x^3 + Ax = B$ in \mathbb{Z}_3^* with Coefficients from \mathbb{Q}_3

I. M. Rikhsiboev₁, A. Kh. Khudoyberdiyev₂, T. K. Kurbanbaev₂, K. K. Masutova₂

ABSTRACT

Recall that in [1] it is obtained the criteria solvability of the Equation $x^3 + ax = b$ in \mathbb{Z}_p^* , \mathbb{Z}_p and \mathbb{Q}_p for P > 3. Since any p-adic number x has a unique form $x = p^k x^*$, where $x^* \in \mathbb{Z}_p^*$ and $x \in \mathbb{Z}_p^*$ in [1] it is also shown that from the criteria in \mathbb{Z}_p^* it follows the criteria in \mathbb{Z}_p^* and \mathbb{Q}_p^* . In this paper we provide the algorithm of finding the solutions of the Equation $x^3 + ax = b$ in \mathbb{Q}_3 with coefficients from \mathbb{Q}_3 .

KEYWORDS: p-Adic Numbers; Solvability of Equation; Congruence