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Abstract. The paper concerns the derivations of diassociative algebras. We introduce
one important class of diassociative algebras, give simple properties of the right and left
multiplication operators in diassociative algebras. Then we describe the derivations of complex
diassociative algebras in dimension two and three.

1. Introduction
Leibniz algebras and associative dialgebras (dialgebra) first arose in K-theory and rapidly
became an object of great interest of many researchers. In 1993, J.Loday introduced the notion
of Leibniz algebra [7] which is generalization of Lie algebra, where the skew-symmetricity of the
brackets is dropped and the Jacobi identity is replaced by the so-called Leibniz identity. Loday
also showed that the link between Lie algebras and associative algebras can be extended to an
analogous relationship between Leibniz algebras and the so-called dialgebras (see [8]). Note that
the dialgebra is generalization of associative algebra equipped with two products. In particular,
it is easy can be shown that if on a vector space V two products a and ` are given then the
bracket [·, ·] by [x, y] = x a y − x ` y defines a Leibniz algebra structure on V. Conversely, the
enveloping algebra of a Leibniz algebra has the structure of a dialgebra.

In the present paper we deal with the problem of description of derivations of diassociative
algebras. The concept of derivation in this case can be easily imitated from that of finite-
dimensional algebras. The algebra of derivations plays important role in the classification
problems and in different applications of algebras. It is easy to show that the set of all derivations
of a diassociative algebra form a Lie algebra with respect to the commutator bracket. In the
paper we make use of classification results of two and three-dimensional complex diassociative
algebras from [13].

Definition 1.1 An associative dialgebra (or diassociative algebra) D over a field K is a vector
space V over the K equipped with two bilinear associative binary operations denoted by a and
`, respectively, satisfying the following axioms:

(x a y) a z = x a (y ` z), (x ` y) a z = x ` (y a z), (x a y) ` z = x ` (y ` z) (1)

∀ x, y, z ∈ V, that is the triple D = (V,a,`) with the axioms above is said to be a diassociative
algebra.
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Let us consider a few examples of diassociative algebras appeared in the literature.

Example 1.1 Let K[x, y] be the polynomial algebra over a field K of characteristic 0. If we
define two multiplications on K[x, y] as follows

f(x, y) a g(x, y) = f(x, y)g(y, y) and f(x, y) ` g(x, y) = f(x, x)g(x, y)

then (K[x, y],a,`) is a diassociative algebra.

Example 1.2 Let (D,a,`) be a diassociative algebra. Consider the module of n×n - matrices
Mn(D) = Mn(K)⊗D with products (α a β)ij = Σkαik a βkj and (α ` β)ij = Σkαik ` βkj . Then
(Mn(D),a,`) is a diassociative algebra. Moreover, if D1 and D2 are diassociative algebras over
a field K then their tensor product D1

⊗
K D2 is provided by a dialgebra structure defined as

follows:
(a⊗ a′) ? (b⊗ b′) = (a ? b)⊗ (a′ ? b′) for ? =` and a .

In fact, a diassociative algebra structure on an n-dimensional vector space V with a basis
{e1, e2, ..., en} can be given by defining the products of the basis vectors {e1, e2, ..., en}.

Example 1.3 The products

e1 ` e1 = e1, e1 ` e2 = e2, e1 a e1 = e1, e2 a e1 = e2

on two-dimensional and the products

e1 a e2 = e1, e2 a e2 = e2, e3 a e3 = e3, e2 ` e1 = e1, e2 ` e2 = e2, e3 ` e3 = e3

on three-dimensional vector spaces define diassociative algebra structures, respectively.

A bar unit in D is an element e ∈ D such that

x a e = x = e ` x, for all x ∈ D.

It is observed that the bar unit is not unique. The set of all bar units of a diassociative algebra
is called a halo.

In Example 1.1 any element of the form 1 + (y − x)g(x, y) for g(x, y) ∈ K[x, y] is a bar unit,
therefore the halo of the diassociative algebra K[x, y] is the subset {1 + (y − x)g(x, y)|g(x, y) ∈

F [x, y]}, meanwhile the identity matrix I =


1 0 ... 0
0 1 ... 0
... ... ...
0 0 ... 1

 is a bar unit of Mn(D) =

Mn(K)⊗D in Example 1.2 and e1 is a bar unit in part one of Example 1.3.
Note also that there is no point unit (that is an element e ∈ D such that x ` e = e a x = x

for all x ∈ D) in a diassociative algebra, except for the case when the two products coincide,
i.e., D is an associative algebra.

Definition 1.2 A homomorphism of diassociative algebras D1 and D2 (provided both are given
over the same field K) is a K-linear map f : D1 → D2 such that f(x ` y) = f(x) ` f(y) and
f(x a y) = f(x) a f(y) for all x, y ∈ D1.

As usual a bijective homomorphism is called isomorphism.

Definition 1.3 A subspace D0 of a diassociative algebra D is said to be subalgebra if x ` y and
x a y are in D0 whenever x, y ∈ D0.
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Definition 1.4 A two-sided ideal of a diassociative algebra D is a subspace I such that x ? y,
y ? x are in I for all x ∈ D, y ∈ I with ? =` and a . Note that I is called the right and left ideal
if y ` x, y a x are in I, and x ` y, x a y are in I, respectively, for all x ∈ D, y ∈ I .

Example 1.4 Obviously, I = {0} and D are two-sided ideals. As well as the kernel Kerϕ =
{x ∈ D1| ϕ(x) = 0} of a homomorphism ϕ : D1 −→ D2 from diassociative algebra D1 to D2

is two-sided ideal in D1 whereas the image Imϕ = {y ∈ D2|∃x ∈ D1 : ϕ(x) = y} is just a
subalgebra of D2.

Let D be a Diassociative algebra and M, N be subsets of D. We define

M♦N := M ` N +M a N ,

where
M ` N = SpanC{a ` b| a ∈M, b ∈ N}

and
M a N = SpanC{a a b| a ∈M, b ∈ N}.

It is obvious that if M is left (N is right) ideal in D so is M♦N, respectively. Therefore, if
both M and N are two-sided ideals so is M♦N.

Let us consider the following series of two-sided ideals:

D1 = D, Dk+1 = D1♦Dk +D2♦Dk−1 + ...+Dk♦D1 (2)

Definition 1.5 A Diassociative algebra D is said to be nilpotent if there exists s ∈ N such that
Ds = 0.

Example 1.5 Two dimensional algebra with multiplication table e1 ` e1 = e2, e1 a e1 = αe2,
α ∈ C on a basis {e1, e2} is a nilpotent diassociative algebra.

Note that the diassociative algebra in Example 1.2 and in Example 1.3 are not nilpotent.
An ideal I of diassociative algebra D is said to be nilpotent if it is nilpotent as a subalgebra

of D.
It is observed that the sum I1 + I2 = {z ∈ D|z = x1 + x2, x1 ∈ I1 and x2 ∈ I2} of two

nilpotent ideals I1, I2 of D is nilpotent. Therefore there exists unique maximal nilpotent ideal
of D called nilradical. The nilradical plays an important role in the classification problem of
algebras.

Definition 1.6 A derivation of diassociative algebra D is a linear transformation d : D → D
satisfying

d(x a y) = d(x) a y + x a d(y) and d(x ` y) = d(x) ` y + x ` d(y)

for all x, y ∈ D.

The set of all derivations of a diassociative algebra D we denote by Der(D). It is a Lie algebra
with respect to the bracket [d1, d2] = d1 ◦ d2 − d2 ◦ d1.

Definition 1.7 A dialgebra D is called characteristically nilpotent if elements of Der(D) are
nilpotent with respect to the composition.

The study of characteristically nilpotent algebras is important in connection with the
observations made by Jacobson in [3] and further developments of this concept for different
types of algebraic structures we refer to [1], [2], [4], [5], [6], [9], [10], [11] and [12].
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2. Results
Since a diassociative algebra possess two binary operations there are two right Rx, rx and two
left Lx, lx multiplication operators defined as follows

Rx(y) := y a x, rx(y):= y ` x,
Lx(y) := x a y, lx(y) := x ` y.

Lemma 2.1 The sets R(D) = {Rx|x ∈ D}, L(D) = {Lx|x ∈ D}, r(D) = {rx|x ∈ D},
l(D) = {lx|x ∈ D} are closed with respect to the composition.

Proof. The proof can be easily derived from the following identities

Rxay = RyRx, Lxay = LyLx,

rx`y = ryrx, lx`y = lylx.

The proof of the next lemma also can be easily obtained by simple computations.

Lemma 2.2 For the right and left multiplication operators of diassociative algebras the following
identities hold true:

RxRy = Rrx(y), Rxry = rRx(y), rxRy = rxry,

LxLy = Lxly, lxLy = Llx(y), lxly = lLx(y).

Note that the following combinations of the right and left multiplication operators are also
derivations of the diassociative algebra D:

LxRy + LxLy and lxry + lxly.

Definition 2.1 The subsets AnnR(D) and AnnL(D) defined by

AnnR(D) = {x ∈ D|D a x = 0, D ` x = 0}

and
AnnL(D) = {x ∈ D|x a D = 0, x ` D = 0}

of a diassociative algebra D are called the right and the left annihilators of D, respectively.

Lemma 2.3 The sets AnnR(D) and AnnL(D) are two-sided ideals of D.

Let us consider diassociative algebra (D,`,a) and linear transformations adz(x) = x a z−z `
x. It is not difficult to verify that adz is a derivation of D. This type derivations are called inner
derivations of diassociative algebra D. The set of all inner derivations we denote by J(D). Then
one has

Lemma 2.4 The subset J(D) is an ideal of the Lie algebra Der(D).

Proof. Indeed, adz1 − adz2 = adz1−z2 and [d, adz] = add(z), for any d ∈ Der(D).

Let D be an n-dimensional complex diassociative algebra and {e1, e2, ..., en} be its basis. The
components of ei ` ej and ek a es, where i, j, k, s = 1, 2, ..., n on the basis {e1, e2, ..., en} are
called the structure constants of D on {e1, e2, ..., en}, i.e., if

ei a ej =

n∑
k=1

γkijek, ei ` ej =

n∑
k=1

δkijek
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then the set
{γkij , δ

q
st ∈ K, 1 ≤ i, j, k, s, t, q ≤ n}

is called the set of structure constants of D. This means that each point {γkij , δ
q
st} of the affine

space K2n3
defines an algebra structure on underlying vector space, however, for this structure

to be a diassociative structure the scalars {γkij , δ
q
st} must satisfy conditions according to the

axioms (1) of the diassociative algebra.
Further all the algebras considered are supposed to be over the field of complex numbers C.
Let us now make a discussion on derivations of the diassociative algebras. A derivation d of

D we represent in matrix form d = (dij)i,j=1,2,...,n on the basis {e1, e2, ..., en}. If the structure
constants {γkij , δ

q
st} are given then we form a system of equations with respect to dij and solving

this system we get the descriptions of the derivations.
This system has the following form:

n∑
k=1

γkijdkt =

n∑
k=1

(dkiγ
t
kj + dkjγ

t
ik),

n∑
k=1

δkijdkt =

n∑
k=1

(dkiδ
t
kj + dkjδ

t
ik), (2)

for 1 ≤ i, j, t ≤ n.
Let us apply this approach to find the derivations of complex diassociative algebras in

dimension two and three. We make use of classification results from [13].
In two dimensional case the system (2) has the following form:

d12γ
2
11 = d21γ

1
21 + d11γ

1
11 + d21γ

1
12,

d21γ
1
11 + d22γ

2
11 = 2d11γ

2
11 + d21γ

2
21 + d21γ

2
12,

d12γ
2
12 = d21γ

1
22 + d12γ

1
11 + d22γ

1
12,

d21γ
1
12 = d11γ

2
12 + d21γ

2
22 + d12γ

2
11,

d12γ
2
21 = d12γ

1
11 + d22γ

1
21 + d21γ

1
22,

d21γ
1
21 = d12γ

2
11 + d11γ

2
21 + d21γ

2
22,

d11γ
1
22 + d12γ

2
22 = d12γ

1
12 + 2d22γ

1
22 + d12γ

1
21,

d21γ
1
22 = d12γ

2
12 + d22γ

2
22 + d12γ

2
21,

d12δ
2
11 = d21δ

1
21 + d11δ

1
11 + d21δ

1
12,

d21δ
1
11 + d22δ

2
11 = 2d11δ

2
11 + d21δ

2
21 + d21δ

2
12,

d12δ
2
12 = d21δ

1
22 + d12δ

1
11 + d22δ

1
12,

d21δ
1
12 = d11δ

2
12 + d21δ

2
22 + d12δ

2
11,

d12δ
2
21 = d12δ

1
11 + d22δ

1
21 + d21δ

1
22,

d21δ
1
21 = d12δ

2
11 + d11δ

2
21 + d21δ

2
22,

d11δ
1
22 + d12δ

2
22 = d12δ

1
12 + 2d22δ

1
22 + d12δ

1
21,

d21δ
1
22 = d12δ

2
12 + d22δ

2
22 + d12δ

2
21.

The possible values of γkij and δqst we take from the classification result of [13] mentioned
above.
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Theorem 2.1 Any two-dimensional complex diassociative algebra is included in the following
isomorphism classes
Dias12 : e1 ` e1 = e1, e1 a e1 = e1, e2 a e1 = e2;
Dias22 : e1 ` e1 = e1, e1 ` e2 = e2, e1 ` e1 = e1;
Dias32 : e1 ` e1 = e2, e1 a e1 = αe2, α ∈ C;
Dias42 : e1 ` e1 = e1, e1 ` e2 = e2, e1 a e1 = e1, e2 a e1 = e2.

Let us describe the derivations of Dias12. Due to Theorem 2.1 we have γ111 = 1, δ111 = 1,
δ221 = 1 and other {γkij δ

q
st} are zero. Substituting and solving the system above we get the

derivations of Dias12 as follows

d =

(
0 0
0 d22

)
The other cases can be easily found by the same way. As a result one has

Lemma 2.5 The derivations of two dimensional complex diassociative algebras are given as
follows

Table 1. Derivations of two-dimensional diassociative algebras

Isomorphism Classes Derivations Dim. of the derivation algebras

Dias12

(
0 0
0 d22

)
1

Dias22

(
0 0
0 d22

)
1

Dias32(α), α ∈ C
(
d11 0
d21 2d11

)
2

Dias42

(
0 0
d21 d22

)
2

Due to the result of [13] the isomorphism classes of three-dimensional diassociative algebras
are given as follows.
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Theorem 2.2 Any three-dimensional complex diassociative algebra is included in the following
isomorphism classes of three-dimensional complex diassociative algebras

Dias13 :e1 a e2 = e1, e2 a e2 = e2, e3 a e3 = e3, e2 ` e2 = e2, e3 ` e3 = e3;

Dias23 :e1 a e2 = e1, e2 a e2 = e2, e3 a e3 = e3, e2 ` e1 = e1, e2 ` e2 = e2, e3 ` e3 = e3;

Dias33 :e1 a e2 = e1, e2 a e2 = e2, e3 a e3 = e3, e2 ` e2 = e2, e3 ` e1 = e1;

Dias43 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e3 ` e3 = e3;

Dias53 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e3 ` e1 = e1 − e2, e3 ` e3 = e3;

Dias63 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e3 ` e1 = e1, e3 ` e2 = e2, e3 ` e3 = e3;

Dias73 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e3 ` e1 = e2, e3 ` e2 = e2, e3 ` e3 = e3;

Dias83 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e1 ` e3 = e2, e2 ` e3 = e2,

e3 ` e1 = e1 − e2, e3 ` e3 = e3;

Dias93 :e3 a e1 = e2, e3 a e2 = e2, e3 a e3 = e3, e3 ` e1 = e1, e3 ` e2 = e2, e3 ` e3 = e3;

Dias103 :e3 a e1 = e1, e2 a e3 = e2, e3 a e3 = e3, e3 ` e1 = e1, e3 ` e3 = e3;

Dias113 :e3 a e1 = e1, e2 a e3 = e2, e3 a e3 = e3, e3 ` e1 = e1, e3 ` e2 = e2, e3 ` e3 = e3;

Dias123 :e1 a e3 = e1, e2 a e3 = e2, e3 a e1 = e1, e3 a e3 = e3, e1 ` e3 = e1, e3 ` e1 = e1,

e3 ` e3 = e3;

Dias133 :e1 a e3 = e1, e2 a e3 = e2, e3 a e1 = e1, e3 a e3 = e3, e1 ` e3 = e1, e3 ` e1 = e1,

e3 ` e2 = e2, e3 ` e3 = e3;

Dias143 :e1 a e3 = e1, e2 a e3 = e2, e3 a e1 = e1, e3 a e3 = e3, e1 ` e3 = e1 + e2,

e3 ` e1 = e1, e3 ` e2 = e2, e3 ` e3 = e3;

Dias153 :e1 a e1 = e2, e3 a e3 = e3, e3 ` e3 = e3;

Dias163 :e1 a e3 = e2, e3 a e1 = ke2, e1 ` e1 = me2, e1 ` e3 = ne2, e3 ` e1 = pe2,

e3 ` e3 = qe2;

Dias173 :e1 a e3 = e2, e1 a e2 = e3, e2 a e1 = e3, e1 ` e1 = e2 + e3, e1 ` e2 = e3,

e2 ` e1 = e3;

where k,m, n, p, q ∈ C.
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Theorem 2.3 The derivations of three dimensional complex diassociative algebras are given as
follows:

Table 2. Derivations of three-dimensional diassociative algebras

Isom. Derivations Dim. of Isom. Derivations Dim. of
Class Der.alg. Class Der.alg.

Dias13

 d11 0 0
0 0 0
0 0 0

 1 Dias23

 d11 d12 0
0 0 0
0 0 0

 2

Dias33

 d11 0 0
0 0 0
0 0 0

 1 Dias43

 d11 0 0
d21 d22 0
0 0 0

 3

Dias53

 d11 0 0
d21 d22 0
0 0 0

 3 Dias63

 d11 0 0
d21 d22 d23
0 0 0

 4

Dias73

 d11 0 0
d11 d22 d23
0 0 0

 4 Dias83

 d11 0 0
d21 d22 d23
0 0 0

 4

Dias93

 d11 0 0
d21 d22 d23
0 0 0

 4 Dias103 ,

 d11 0 d13
0 d22 0
0 0 0

 3

Dias113

 d11 0 d13
0 d22 0
0 0 0

 3 Dias123

 d11 0 0
0 d22 0
0 0 0

 2

Dias133

 d11 0 d13
0 d22 d23
0 0 0

 4 Dias143

 d11 0 0
0 d22 d23
0 0 0

 3

Dias153

 d11 0 0
d21 d22 0
0 0 0

 3 Dias173

 d11 0 0
0 3d11 0
0 0 2d11

 1

Dias163

 0 0 0
d21 0 d23
0 0 0

 2 Dias163

 0 0 βd33
d21 0 d23
0 0 d33

 3

k = 0, β = p− 2q
n 0 0 d13

d21 0 d23
0 0 0

 3

 d11 0 αd11 − 2d23
d21 d11 d23
0 0 d33

 4

n = −p k,m = 0 α = p+ q
n d11 0 αd11

d21 d11 d23
0 0 0

 3

 d11 0 αd11
d21 d11 d23
γd11 0 0

 3

m = 0, α = p+ q
n k = −1, α = p+ q

n , γ = p− m
n

where k,m, n, p, q are structure constants of the algebra Dias316.

International Conference on Quantum Optics and Quantum Information (icQoQi) 2013 IOP Publishing
Journal of Physics: Conference Series 553 (2014) 012006 doi:10.1088/1742-6596/553/1/012006

8



As a result of these descriptions we have

Corollary 2.1 There is no characteristically nilpotent diassociative algebra in dimensions two
and three.
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