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Abstract 

 
In this paper we present a two point and three point one-step block method for solving second 

order delay differential equations (DDEs). The one-step block method will solve directly the 

second order DDEs without reducing to first order equations. The two point and three point 

one-step block method will compute the solutions for the DDEs at two and three points 

simultaneously along the interval. These methods will solve the retarded type of DDE of 

single delay using constant step size. The P- stability and Q-stability are also discussed. The  
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numerical results are presented to illustrate the performance of those block method for 

solving delay differential equations. 

 

Mathematics Subject Classification: 65L06, 65L10 
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1 Introduction 
 

Delay differential equations are similar to ordinary differential equations, but their 

evolution involves past values of the state variable. The solution of delay differential 

equations requires knowledge of not only the current state, but also of the state at a certain 

time previously. Delay differential equations (DDEs) have numerous applications in science 

and engineering, for example in population dynamics and bioscience problems. 

Generally, a DDE refer to both retarded type of DDE (RDE) and neutral type of DDE 

(NDDE). In this research, we only concerned with DDE of the retarded type (RDE). One-step 

block method is used to solve second order DDEs of the form 

 

( ) ( )( )τ−= xyyxfxy ,," , for bxa ≤≤                (1.1) 

 ( ) ( )xxy ϕ= ,   for ax ≤  

 

which has one delay term. ( )xϕ  is the initial function, ( )( )xyx,τ  is called the delay, 

( )( )xyxx ,τ−  is called the delay argument and the value of ( )( )( )xyxxy ,τ−  is the solution of 

the delay term. The delay is called constant delay if it is a constant, it is called time dependent 

delay if the delay is function of time x  and the delay is known as state dependent delay if it is 

a function of time x  and ( )xy . 

It appears in the literature that there is wide interest in the numerical solution of DDE 

and many approaches have been adopted for solving particular equations. Such work can be 

found in Bellen and Zennaro [1], Al-Mutib [2], Evans and Raslan [3], El-Hawary and El-

Shami [5], Oberle and Pesh [6], Martin and Garcia [8], Taiwo and Odetunde [10], and Radzi 

et al. [7]. 

Bellen and Zennaro [1] presented the algorithms based on the predictor-corrector 

version of the one-step collocation method at Gaussion points for non-stiff DDEs with time 

dependent delays. Ismail et al. [4] compared the numerical results based on Newton divided 

difference and In’t Hout Interpolations in solving delay differential equations. Several 

techniques have been proposed to approximate the delayed term. For instance, Barwell [11] 

implemented linear and quadratic interpolation whereas Radzi et al. [7] used Neville’s 

interpolation to compute the delay term. Radzi et al. [7] discussed the two and three point 

one-step block method for the treatment of first order delay differential equations. Numerical 

results are presented to show the performance based on those block methods for solving delay 

differential equations. The numerical results shown that the three point one-step method is 

more efficient compared to the two point one-step method. Martin and Garcia [8] developed 

variable step size multistep methods for higher order delay differential equations. Evans and  
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Raslan [3] developed a numerical method for linear and non linear higher order delay 

differential equations based on the Adomian decomposition method. While Taiwo and 

Odetunde [10] proposed a new decomposition method for the numerical solution of the 

second order delay differential equations. 

  

The approach in this research is to extend the proposed block method in Mukhtar et 

al. [9] and Majid et al. [12] for solving equation (1.1) directly without reducing to system of 

first order DDEs using two point and three point one-step block method. 

  

 

2 Formulation and Implementation 
 

Most numerical methods for solving ordinary differential equations (ODEs) 

 

 ( ) ( )',," yyxfxy = , ( ) 0yay = , ( ) 0'' yay =   [ ]bax ,∈             (2.1) 

 

can be adapted to solve DDE. In this paper, we implement two point one-step block method 

proposed by Mukhtar et al. [9] and Majid et al. [12] to solve DDEs. The formulae of the one-

step block methods are as follows: 

 

Two point one-step block method: 

( )211 85
12

'' +++ −++= nnnnn fff
h

yy  

( )21

2

1 67
24

' +++ −+++= nnnnnn fff
h

hyyy
               

 

( )2112 58
12

'' ++++ ++−+= nnnnn fff
h

yy  

( )21

2

112 310
24

' +++++ ++−++= nnnnnn fff
h

hyyy
              

(2.2) 

Three point one-step block method: 

1 1 2 3

2

1 1 2 3

(9 19 5 )
24

(97 114 39 8 )
360

n n n n n n

n n n n n n n

h
y y f f f f

h
y y hy f f f f

+ + + +

+ + + +

′ ′= + + − +

′= + + + − +

 

2 1 1 2 3

2

2 1 1 1 2 3

( 13 13 )
24

( 8 129 66 7 )
360

n n n n n n

n n n n n n n

h
y y f f f f

h
y y hy f f f f

+ + + + +

+ + + + + +

′ ′= + − + + −

′= + + − + + −

 

3 2 1 2 3

2

3 2 2 1 2 3

( 5 19 9 )
24

(7 36 171 38 )
360

n n n n n n

n n n n n n n

h
y y f f f f

h
y y hy f f f f

+ + + + +

+ + + + + +

′ ′= + − + +

′= + + − + +

                             (2.3) 
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We start by solving second order delay differential equations in the form of (1.1) in the 

interval ],[ ba . We implement this method using C programming with simple iterations to 

generate the approximate y -values. The input of the program are the endpoints a  and b , 

initial condition 0y , 0'y  and step size h . The output of the program are the values x  which 

are used to calculate each y -approximation, 'y -approximation, step size h , exact solution, 

y -exact, the error between approximation and exact solution, maximum error and execution 

time. 

The algorithm for the 2PBDDE code is given as follows: 

 Step 1 : Set 
N

ab
h

−
= ; 

 Step 2 : Set the initial values 0x , 0y , ( )τ−0x , ( )τ−0y  and ( )( )τ−000 ,, yyxf . 

 Step 3 : Calculate values of 1x  and 2x  using the direct Adam Bashford 

 Step 4 : Calculate the predictors values of 121 ,, yyy ′  and 2y ′ .  

 Step 5 : Calculate value of delay argument of the equation, ).( τ−ix  

 Step 6 : Locate the position of ( )τ−ix . If ( ) 0xxi ≤−τ , use the initial function to  

     approximate the delay term ( )τ−ixy  else approximate values of delay term 

     using divided difference interpolation. 

 Step 7 : Calculate values of 1f  and 2f  using values of 1y , 2y , 1'y , 2'y , ( )τ−1xy  

              and ( )τ−2xy  obtain from Step 6. 

 Step 8 : Calculate the corrector values for 1y , 2y , 1'y  and 2'y  using the two point 

    one - step block method formula: 

  ( )21001 85
12

'' fff
h

yy −++=  

  ( )210

2

001 67
24

' fff
h

hyyy −+++=  

  ( )21012 58
12

'' fff
h

yy ++−+=  

  ( )210

2

112 310
24

' fff
h

hyyy ++−++=  

 Step 9 : Calculate the error. 

 Step 10: Update values of 0x , 1x , 0y , 1y , 0f  and 1f  for the next block. Go to Step 

     2. 
 Step 11: The procedure is complete.   

 

The codes were implemented in PECE scheme where P and C denote the application of 

predictor and corrector respectively while E denote the evaluation of function f . Now, we 

described how the calculation of ( )αy  where ( )( )xyxx ,τα −=  is being carried out. The 

location of α  is sought because the calculation of the delay term depends on this location. 

We should use the interpolation method which has either the same or higher order  than the 

integration method in order to preserve the desired order of accuracy. Here the delay term is  
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approximated using four points divided difference interpolation if values of mny +  is obtained 

by two point block method. Otherwise, five points divided difference interpolation is applied 

if values of mny +  is obtained by three point block method. In divided difference form, the 

interpolating polynomial can be written as 

 

 ( ) [ ] ( ) [ ] ( )( ) [ ] K+−−+−+= 210101000 ,,, xxxyxxxxxxyxxxyxPn  

           ( ) ( ) [ ]nn xxxyxxxx ,,, 1010 KK −−−+                                       

where 

 

            [ ] [ ] [ ]

0

11021
10

,,,,,,
,,,

xx

xxxyxxxy
xxxy

n

nn
n

−

−
= −KK

K . 

 

 

3 Stability Analysis 
 

In this section, we will discuss the stability analysis of two point one-step block 

method for the numerical solution of delay differential equations (DDEs). We will find the P- 

stability and Q-stability of the method using the following test equations,  

 

 ( ) ( )τµλ −+= xyxyy" ,  0xx ≥  

 ( ) ( )xxy φ= ,   0xx ≤                 (3.1) 

and 

 ( )τµ −= xyy" ,  0xx ≥   

 ( ) ( )xxy φ= ,   0xx ≤                 (3.2) 

 

where the parameters R∈µλ , . Consider a fixed step size h  such that nhxxn += 0  and 

τ=mh , +∈ Im and letting λ2

1 hH =  and µ2

2 hH = , 

 

Definition 4.1: For a fixed step size h  and λ , R∈µ  in (3.1), the region PR  in the complex 

21 HH −  plane is called the P-stability region if for any ( ) PRHH ∈21 , , the numerical 

solution of (3.1) vanishes as ∞→nx . 

 

Definition 4.2: For a fixed step size h  and C∈µ  in (3.2), the region QR  in the complex 2H  

plane is called the Q-stability region if for any QRH ∈2 , the numerical solution of (3.2) 

vanishes as ∞→nx . 

 

3.1 P-Stability Analysis 

The general form of two point and three point one-step block method can be written 

in the matrix form as 
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11

2

11221122 +++++ +++= NNNNN FChYhBYhBYAYA               (3.3) 

where 

 

Two point one-step block method: 
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Three point one-step block method: 
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The following result obtained when (3.3) is applied to (2.1) 

 

 ( )mNNNNNN YYChYhBYhBYAYA −++++++ ++++= 111

2

11221122 µλ             (3.4) 

 

Rearranging we have 

 

 ( ) ( ) 011

2

22211

2

11 =++−+++ −+++ mNNN YChYhBAYChhBA µλ             (3.5) 

 

The P-stability regions are sketched in the 21 HH −  plane by using the boundary locus 

technique where the boundary is determined by letting 1=ς , 1−=ς  and 
θς ie=  for 

πθ 20 ≤≤ . For 
θς ie= , the boundary of the stability region is obtained by solving two 

simultaneous equations 

 

 ( ){ }θπ i

mPB eHH ;, 21,2ℜ  and ( ){ } 0;, 21,!2 =ℑ θπ i

mBP eHH              (3.6) 

 

The P-stability polynomial for the two point one-step block method is given by 

 

 ( ) ( ) ( ) 1
12

2
22

1
111121,2 det;, ς+ς+−+ς++=ςπ ++

CHhBACHhBAHH
mm

mPB

             

(3.7) 
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In this research, (3.7) is also applied to the three point one-step block method for finding the 

P-stability regions. Taking 1=m for all cases, the regions for two point and three point one-

step block method are depicted in Figure 1 and 2 respectively. 

 

 

 

 
 

 

Figure 1: P-stability region for two point one-step block method 

 

 

 

 

The P-stability regions of those methods lie inside the open ended regions given in Figure 1 

and 2. From the figures, it is observed that the regions are about the same when the method is 

implemented in two point and three point one-step block method.  
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Figure 2: P-stability region for three point one-step block method 

 

 

 

3.2 Q-Stability Analysis 

The Q-stability regions are sketched in the complex 2H -plane. By using the boundary 

locus technique, the regions are determined by solving 

 

 ( ) .0;2,12 =ψ θi
mBP eH                   (3.8) 

  

The general Q-stability polynomial for the two point one-step block method, ( )ςψ ;2,12 HmBP  

is given by 

 

 ( ) ( ) ( ) .det;,
1

12
2

22
1

1121,2 ς+ς+−+ς+=ςπ ++
CHhBAhBAHH

mm
mPB             (3.9)  

 

Eqn. (3.9) is also applied to the three point one-step block method for finding the Q-stability 

region. The Q-stability regions where the polynomial satisfies the root condition is sketched 

in the complex 2H -plane for two point and three point one-step block method are shown in 

Figure 3 and 4 respectively. The value of m  is also considered as 1.  

 

Below is the Q-stability polynomial and the stability regions for two point one-step block 

method: 
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hthhhhH
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1
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1
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++++

+++++

+−+−

++−+=Ψ

ςςςς

ςςςςς
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Figure 3: Q-stability region for two point one-step block method 

 

 

The stability polynomial and Q-stability of the three point one-step block method is given as 

follows 

  

( )

mmmm

mmmm

mmmm

mPB

tttht

hthtthth

hhhhH

612611610511

510594102492

482393383284

2,3
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40

123

40

63

20

3

1728

3499
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1
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45

60

1

8640

337
;

++++

++++

++++

+−+−

−++−

−+−=Ψ ςςςςς

 

 
Figure 4: Q-stability region for three point one-step block method 

 

The Q-stability regions of those methods lie inside the bounded regions given in Figure 3 and 

4.  



Solving second order delay differential equations                                                             2657 
 

 

 

5 Numerical results 

 
In order to study the efficiency of the developed codes, we present some numerical 

results for the following problems: 

Problem 1   

 ( ) ( ) ),(
2

1

2

1
" π−+−= xyxyxy π≤≤ x0  

 ( ) ( ),sin1 xxy −=    0≤≤π− x  

 ( ) ( ) 10',10 −== yy  

 Solution:  

 ( ) ( )xxy sin1 −=   
  

Problem 2 

( ) ),(" π−= xyxy   π≤≤ x0  

( ) ( ),sin xxy =   0≤≤π− x  

( ) ( ) 10',00 == yy  
Solution: 

( ) ( )xxy sin=  
  

 Problem 3 

 ( ) ( ) ),1(" −+−= xyxyxy  20 ≤≤ x  

 ( ) ,23
2 ++= xxxy   01 ≤≤− x  

 ( ) ( ) 00',20 == yy  
Solution:   

 ( ) ( ) ( ) 102sincos4
2 ≤≤−++−= xxxxxxy  

 

( )

21sin1
2

1sin7

2

1cos
cos4

2

1cos3
1sinsin

22

1sincos

1cossin21coscos24
2

1coscos
1sincos2

2

≤≤







−+

−
+








++++

−++−++−=

xttt
tt

ttttt
tt

ttxy

 

  

The following notations are used in Table 1-3: 

h   Step size used 

MTD  Method employed 

MAXE  Magnitude of the maximum error of the computed solution 

FCN  Total function calls 

TIME  Execution times in microseconds 

2PBDDE Two point one-step block method for solving second order DDE directly 

3PBDDE Three point one-step block method for solving second order DDE directly 

 

The tables below shown the numerical results for the three given problems when solved using 

the proposed block methods. The codes were written in C language. 
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Table 1: Comparison between the 2PBDDE and 3PBDDE for solving Problem 1 

 

h  METHOD MAXE FCN. TIME ( µ s) 

30

π
 

2PBDDE 1.211031e-04 75 90 

3PBDDE 2.414116e-04 70 82 

300

π
 

2PBDDE 1.173845e-07 750 194 

3PBDDE 2.337067e-07 700 162 

3000

π
 

2PBDDE 9.798482e-11 7500 1118 

3PBDDE 1.781091e-11 7000 770 

 

 

 

 

 
Table 2: Comparison between the 2PBDDE and 3PBDDE for solving Problem 2 

 

 

 

 

 

 

h  METHOD MAXE FCN TIME ( µ s) 

30

π
 

2PBDDE 1.968976e-06 75 96 

3PBDDE 2.900691e-06 70 85 

300

π
 

2PBDDE 6.104956e-10 750 202 

3PBDDE 3.481216e-10 700 173 

3000

π
 

2PBDDE 8.203267e-10 7500 1320 

3PBDDE 8.202990e-10 7000 823 
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Table 3: Cmparison between the 2PBDDE and 3PBDDE for solving Problem 3 

 

 

 

The numerical results in Table 1-3 clearly indicate that 3PBDDE performs better in terms of 

total function calls and execution times compared to 2PBDDE.  The total function calls for 

3PBDDE is less than 2PBDDE when solving all tested problems. The computational cost at 

smaller step size obviously decreases when the codes are implemented in 3PBDDE compared 

to 2PBDDE. Both of the methods achieved the desired accuracy in all tested problems. 

 

 

6 Conclusions 
 

In this paper, we have presented the numerical solution of DDEs using two and three 

point one-step block method. Hence, we have shown the efficiency of the proposed methods 

are suitable for solving second order DDEs directly.  
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