

UNIVERSITI KUALA LUMPUR

FINAL EXAMINATION JANUARY 2016 SEMESTER

SUBJECT CODE

: WQD10103

SUBJECT TITLE

TECHNICAL MATHEMATICS 1

LEVEL

: DIPLOMA

TIME / DURATION

9.00 am - 11.30 am

(2 1/2 HOURS)

DATE

.

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of THREE (3) parts. Part A, B and C. Answer all questions in Part A and B. For Part C, answer two (2) questions only.
- 6. Answer all questions in English.
- 7. Formula Sheet is appended.

THERE ARE 10 PAGES OF QUESTIONS, INCLUDING THIS PAGE.

PART A (Total: 15 marks)

MULTIPLE CHOICE QUESTIONS

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

- 1. If -2w + 2 = w + 11, determine the value of w.
 - A. -4
 - B. -3
 - C. 1
 - D. $\frac{1}{2}$
- 2. If $\frac{2t}{3} = \frac{-3t+6}{-2}$, then t is equal to:
 - A. $\frac{18}{5}$
 - B. $-\frac{31}{5}$
 - C. $\frac{1}{2}$
 - D. 2
- 3. Given $3^{x-2} = 81$. Solve for *m*
 - A. 1
 - B. 4
 - C. 3
 - D. 6
- 4. Determine the vertex of $2(x-8)^2-3$.
 - A. (8, -3)
 - B. (-8, -3)
 - C. (2, -3)
 - D. (8, 3)

- 5. Solve $\frac{w^2}{4} = 16$.
 - A. W = 8, W = -8
 - B. W = 0, W = -16
 - C. w = 0, w = 4
 - D. w = 4, w = 16
- 6. Given $\log_2 2t = 3$. Determine the value of t
 - A. 0
 - B. Undefined
 - C. 4
 - D. 5
- 7. Evaluate $\log_2 4 \log_2 8$
 - A. $\frac{1}{2}$
 - B. 2
 - C. -4
 - D. -1
- 8. Perform the operation $\begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 11 \\ -6 \end{bmatrix}$.
 - A. 30
 - B. 4
 - C. 3
 - D. 12
- 9. Let $f(x) = 3x^2 1$. Determine $2[f(x)]^2$
 - A. $4x^4 4x^2 + 1$
 - B. $18x^4 12x^2 + 2$
 - C. $4x^4 2x^2 + 4$
 - D. $8x^4 2x^2 2$

- 10. Evaluate the value of $-8^{\frac{2}{3}}64^{\frac{1}{2}}$
 - A. -32
 - B. 32
 - C. 16
 - D. 10
- 11. Given a parallelogram has an area of $40cm^2$ and a base of 10cm, determine its height.
 - A. 4 cm
 - B. 8 cm
 - C. 2 cm
 - D. 16 cm
- 12. The value of tan 240° is equivalent to:
 - A. cos60°
 - B. sin60°
 - C. tan60°
 - D. -tan60°
- 13. Simplify $3 + \sqrt{-4}$ in standard form a + bi.
 - A. 3-2i
 - B. -10-16i
 - C. 10-16i
 - D. 3 + 2i
- 14. Determine the modulus of the complex number 4-2i.
 - A. $\sqrt{40}$
 - B. √86
 - C. $\sqrt{20}$
 - D. √34

- 15. Simplify (3-5i)+(-4+7i).
 - A. -2 + 3i
 - B. 1 + 2i
 - C. -1+2i
 - D. 7-2i

PART B (Total: 45 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

a) Simplify
$$p^{-2} \times p^6 \div p^{-3}$$

[2 marks]

b) Determine the value of
$$\sqrt{64} \times \sqrt{5^4} \div 8^{-\frac{1}{3}}$$

[3 marks]

Question 2

Solve the following equations:

$$a) \quad \frac{x+3}{2} = -1$$

[2 marks]

b)
$$\frac{x+3}{4} = \frac{2-3x}{3}$$

[3 marks]

Question 3

The three sides of a right-angled triangle are x, x+1 and 5. Determine the value of x, if the longest side is 5.

[5 marks]

Question 4

Given $P(x) = -3x^2 - 2x$ and $Q(x) = 4x^2 + 4x + 3$, determine

a) 3P(2)

[2 marks]

b) P(x)Q(x)

[3 marks]

Question 5

Given
$$P = \begin{bmatrix} 3 & 4 \\ -5 & 10 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 0 & -1 \\ 2 & 6 \end{bmatrix}$. Determine:

a) P-Q

[2 marks]

b) (QP)

[3 marks]

Question 6

a) Determine all the possible values of θ if $\tan \theta = -0.4663$ for $0^0 \le \theta \le 360^0$.

[4 marks]

- b) Figure 1 shows a ladder leans against the side of a building with its foot 7.5 m away from building and makes an angle of 70° with the ground. Determine:
 - i. the length of the ladder, PQ
 - ii. the area of the triangle PQR

Figure 1

[6 marks]

Question 7

Given Z = 5i, W = 1 - 2i, and R = 2 + i. Determine:

a) $\overline{Z} - W$

[2 marks]

b) WR

[4 marks]

c) $\frac{W}{Z}$

[4 marks]

PART C (Total: 40 marks)

INSTRUCTION: Answer TWO questions.
Please use the answer booklet provided.

Question 1

a) Sketch the graph of $y = -x^2 + 5x + 24$ and determine whether the vertex is a minimum or maximum point.

[10 marks]

b) Given (x-k) is a factor of the expression $f(x)=2x^2+(k-3)x-k^2+5k-2$. Determine the possible value(s) of k.

[5 marks]

c) Solve the following simultaneous equations by using the substitution method.

$$x + 3y = 5$$
$$3x + y = 12$$

[5 marks]

Question 2

- a) From a point M, the angle of elevation to the top of a building B is 34°. From a point N, 20 m to the building B, the angle of elevation is 49°.
 - i. Draw a diagram of this situation.

[3 marks]

ii. Calculate the height of building B.

[3 marks]

iii. Calculate the distance between point M to point N.

[4 marks]

b)

Figure 2

Given that the length CB is 33m and AD is 20m as shown in Figure 2. Meanwhile, $\angle CAB$ is 110°, $\angle ACB$ is 36° and also $\angle ADB$ is 80°. Calculate $\angle ABD$.

[10 marks]

Question 3

Given $Z_1 = -3 + 2i$ and $Z_2 = 1 + i$.

- a) Determine:
 - i. $Z_1 + Z_2$

[2 marks]

ii. $Z_1 Z_2$

[4 marks]

iii.
$$W = \frac{Z_1 + Z_2}{Z_1 Z_2}$$
 in the form $a + bi$.

[6 marks]

b) Express W in trigonometric and polar form.

[8 marks]

END OF QUESTION

ALGEBRA

QUADRATIC FORMULA

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

TRIGONOMETRY 1

Arc of length, $S = r\theta$	Area of sector, $A = \frac{1}{2}r^2\theta$		
LAW OF SINE	LAW OF COSINE		
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	$a^2 = b^2 + c^2 - 2bcCosA$		

COMPLEX NUMBER

POWER OF i $i = \sqrt{-1}$ $i^2 = -1$ $i^3 = -i$ $i^4 = 1$ ALGEBRAIC FORM: Z = a + biTRIGONOMETRIC FORM: $Z = r(\cos\theta + i\sin\theta)$ POLAR FORM: $Z = r\angle\theta$ EXPONENTIAL FORM: $Z = re^{i\theta}$ DE MOIVRE'S THEOREM $Z^n = r^n \angle n\theta$ $Z^n = r^n e^{in\theta}$