

UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF INDUSTRIAL TECHNOLOGY

FINAL EXAMINATION JANUARY 2016 SEMESTER

COURSE CODE

: JGB10203

COURSE TITLE

: ENGINEERING MATHEMATICS 1

PROGRAMME LEVEL

: BACHELOR

DATE

: 23 MAY 2016

TIME

9.00 AM - 12.00 PM

DURATION

3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. This question paper consists of TWO (2) sections.
- 4. Answer ALL questions in Section A. Choose THREE (3) questions from Section B.
- 5. Please write your answers on the answer booklet provided.
- 6. Please answer all questions in English only.
- 7. Related formulae attached as reference.

THERE ARE 3 PAGES OF QUESTIONS EXCLUDING THIS PAGE.

SECTION A (Total: 40 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Determine the first five terms of the sequence

$$a_n = \frac{(-1)^n (4n+1)}{2^n + 1}$$

(5 marks)

(b) Identify a formula (the Rule) for the general term a_n of the given sequence

$$\left\{\frac{1}{5}, -\frac{3}{8}, \frac{9}{11}, -\frac{27}{14}, \frac{81}{17}, \dots, \right\}$$

(5 marks)

Question 2

These questions are related to differentiation.

(a) Find the first and second derivatives of the function

i.
$$f(x) = 10 + 3x - x^3 + 2x^4$$

(2 marks)

ii. $f(x) = e^{5x}$

(2 marks)

(b) Calculate derivative of given function

$$f(x) = (x^3 - 13) \sin(1 - 5x)$$

(6 marks)

Question 3

Given vectors a = (1, -2, 3), b = (-4, 5, 6) and c = (-7, 8, 9).

(a) Identify scalar product of vectors a and b.

(2 marks)

(b) Find magnitude of the vector d = -4a + 2b

(3 marks)

(c) Find the angle between the vectors a and c.

(5 marks)

Question 4

Given complex numbers $z_1 = 2 + 2j$, $z_2 = 1 - j$ and $z_3 = -2 + j$

(a) Identify $z_1 + z_2$ and $z_3 - z_1$

(2 marks)

(b) Find trigonometric forms of z_1 .

(3 marks)

(c) Calculate z_1^{10} by applying De Moivre's formula.

(5 marks)

SECTION B (Total: 60 marks)

INSTRUCTION: Answer THREE (3) questions.

Please use the answer booklet provided.

Question 1

Presented questions are related to Series.

(a) Test whether the series $\sum_{k=1}^{\infty} \frac{(5)^n}{(n+1)!}$ is convergent or divergent (Apply Ratio Test)

(10 marks)

(b) Investigate given series for convergence $\sum_{k=1}^{\infty} (-1)^{2n-1} \left(\frac{n}{4n^2+3}\right)$ (Use Alternating Series Test).

(10 marks)

Question 2

(a) Use logarithmic differentiation to find the derivative of the given function.

$$y = (2x - 5)(2 + x^3)(1 - 4x)^2$$

(10 marks)

(b) Find $\frac{dy}{dx}$ by implicit differentiation then determine the equation of the tangent line and normal to the graph of the function defined by the given equation at the indicated point. $x^2 + xy = y^2 - 1$ at P(1, -1)

(10 marks)

Question 3

These questions are related to integration

(a) Evaluate given integral by using partial fractions

$$\int \frac{x+4}{x^2-10x+16} \, dx$$

(10 marks)

(b) Calculate the given integral by using integration by parts

$$\int x^2 \sin(x+5) \ dx$$

(10 marks)

Question 4

First order differential equations

(a) Solve given first order differential equation by separating the variables

$$3x^3 + (y-2)^2 \frac{dy}{dx} = 0$$

(8 marks)

(b) Solve the following homogeneous equation by substituting y = vx

$$(4y+3x)\frac{dy}{dx} = 3x - y$$

(12 marks)

END OF EXAMINATION PAPER

JGB 10203 ENGINEERING MATHEMATICS 1 FORMULAE FOR FINAL EXAM

SEQUENCES AND SERIES

- 1. If $\lim_{n\to\infty} a_n$ exists we say the sequence a_n is converges (or convergent), otherwise we say the sequence diverges (or divergent).
- 2. A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is $a_1 < a_2 < a_3 \dots < a_n < a_{n+1} \dots$ It is called **decreasing** if $a_n > a_{n+1}$.
- 3. The Ratio Test (for series).
 - a. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$ then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore **convergent**).
 - b. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
 - c. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L = 1$ then the Ration test is inconclusive.
- 4. The Alternating series Test

If the Alternating series $\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + b_5 - \cdots$, where $b_n > 0$ satisfies i) $b_{n+1} \le b_n$, ii) $\lim_{n \to \infty} b_n = 0$ then the series is convergent.

5. Taylor and Maclaurin Series

$$f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(x)}{n!} (x-a)^n = f(a) + \frac{f'(x)}{1!} (x-a) + \frac{f''(x)}{2!} (x-a)^2 + \cdots$$
$$f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} (x)^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} (x)^2 + \frac{f'''(0)}{3!} (x)^3 \dots$$

COMPLEX NUMBERS

- 1. Complex number z = a + bj, where $j^2 = -1$, a and b are real numbers.
- 2. Trigonometric form of complex number $z = r(\cos \theta + j \sin \theta)$, where $r = \sqrt{a^2 + b^2}$, $\theta = tan^{-1}(\frac{b}{a})$.
- 3. Exponential form of complex number $z = re^{i\theta}$.
- 4. Power of complex number (Moivre's formula) $z^n = r^n(\cos(n\theta) + j\sin(n\theta))$.
- 5. Roots of a complex number $w_k = z^{\frac{1}{n}} = r^{\frac{1}{n}} \left(\cos \left(\frac{\theta}{n} + \frac{360 \ k}{n} \right) + j \sin \left(\frac{\theta}{n} + \frac{360 \ k}{n} \right) \right)$ where k = 1, 2, 3, ..., n 1.

VECTORS

- 1. Scalar product (dot product) of two vectors: $a \cdot b = |a||b|\cos\theta$,
- 2. $\vec{a} = a_1 i + a_2 j + a_3 k$ and $\vec{b} = b_1 i + b_2 j + b_3 k$ then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.
- 3. Vector product (cross product) of two vectors \vec{a} and \vec{b} : $\vec{a} = a_1 i + a_2 j + a_3 k$ and $\vec{b} = b_1 i + b_2 j + b_3 k$: $a \times b = |a||b| \sin \theta$, or

$$a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)i + (a_1b_3 - a_3b_1)j + (a_1b_2 - a_2b_1)k.$$

FIRST ORDER DIFFERNTIAL EQUASTIONS

- 1. By direct integration: $\frac{dy}{dx} = f(x)$ gives $y = \int f(x) dx$.
- 2. By separating variables: $F(y)\frac{dy}{dx} = f(x)$ gives $\int F(y)dy = \int f(x)dx$.
- 3. Homogeneous equations: substituting y = vx gives $\frac{dy}{dx} = v + x \frac{dv}{dx}$.

DIFFERENTIATION

a) General formulas:

1.
$$\frac{d}{dx}(C) = 0$$
, $C - constant$;

2.
$$\frac{d}{dx}(Cf(x)) = C\frac{d}{dx}f(x) ;$$

3.
$$\frac{d}{dx}(f(x)+g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$
;

4.
$$\frac{d}{dx}(f(x)-g(x)) = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$$

5.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 Power Rule

6.
$$\frac{d}{dx}(f(x)g(x)) = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$$
 Product rule

7.
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{g^2(x)}$$
 Quotient rule

8.
$$\frac{d}{dx} f(g(x)) = \frac{d}{dx} f(g(x)) \frac{d}{dx} (g(x))$$
 Chain Rule

JANUARY 2016 CONFIDENTIAL

b) Differentiation table

Function	Derivative of function	Function	Derivative of function
$y=e^x$	$\frac{dy}{dx} = e^x$	$y = \sec x$	$\frac{dy}{dx} = \sec x \tan x$
$y = a^x$	$\frac{dy}{dx} = a^x \ln a$	$y = \csc x$	$\frac{dy}{dx} = -\csc x \cot x$
$y = \ln x$	$\frac{dy}{dx} = \frac{1}{x}$	$y = \sin^{-1} x$	$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$
$y = \log_a x$	$\frac{dy}{dx} = \frac{1}{x \ln a}$	$y = \cos^{-1} x$	$\frac{dy}{dx} = -\frac{1}{\sqrt{1 - x^2}}$
$y = \sin x$	$\frac{dy}{dx} = \cos x$	$y = \tan^{-1} x$	$\frac{dy}{dx} = \frac{1}{1+x^2}$
$y = \cos x$	$\frac{dy}{dx} = -\sin x$	$y = \cot^{-1} x$	$\frac{dy}{dx} = -\frac{1}{1+x^2}$
$y = \tan x$	$\frac{dy}{dx} = \sec^2 x$	$y = \sec^{-1} x$	$\frac{dy}{dx} = \frac{1}{x\sqrt{x^2 - 1}}$
$y = \cot x$	$\frac{dy}{dx} = -\csc^2 x$	$y = \csc^{-1} x$	$\frac{dy}{dx} = -\frac{1}{x\sqrt{x^2 - 1}}$

c) Differentiation of parametric functions.

If function given in parametric form y = y(t), x = x(t) then

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$
 first order and $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dt} \left(\frac{dy}{dx}\right) \frac{dt}{dx}$ second order

d) Logarithmic differentiation

$$y = uvw$$

$$\ln(y) = \ln(uvw)$$

$$\ln(y) = \ln(u) + \ln(v) + \ln(w)$$

$$\frac{d}{dx}\ln(y) = \frac{d}{dx}(\ln(u) + \ln(v) + \ln(w))$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{u}\frac{du}{dx} + \frac{1}{u}\frac{dv}{dx} + \frac{1}{u}\frac{dw}{dx}$$

$$\frac{dy}{dx} = uvw\left(\frac{1}{u}\frac{du}{dx} + \frac{1}{u}\frac{dv}{dx} + \frac{1}{u}\frac{dw}{dx}\right)$$

e) Implicit Differentiation

f(x, y) = 0 differentiate given implicit function (both sides of equation) with respect to x considering y as a function.

INTEGRATION

a) Integration of the forms $\int f(x)f'(x) dx$ and $\int \frac{f'(x)}{f(x)} dx$

$$\int f(x)f'(x) \, dx = \begin{bmatrix} u = f(x), \\ du = f'(x)dx \end{bmatrix} = \int u \, du = \frac{u^2}{2} + C = \frac{f^2(x)}{2} + C$$

$$\int \frac{f'(x)}{f(x)} \, dx = \begin{bmatrix} u = f(x), \\ du = f'(x)dx \end{bmatrix} = \int \frac{du}{u} = \ln u + C = \ln f(x) + C$$

b) Integration table

$\int u dv = uv - \int v du \text{ (integration by part)}$	$\int dx = x + C , \text{ (where } C \text{ is constant)}$
$\int k dx = k x + C, (k \text{ is any real number})$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$
$\int \frac{dx}{x} = \ln x + C$	$\int e^x dx = e^x + C$
$\int a^x dx = \frac{a^x}{\ln a} + C$	$\int \sin x dx = -\cos x + C$
$\int \cos x dx = \sin x + C$	$\int \sec^2 x dx = \tan x + C$
$\int \csc^2 x dx = -\cot x + C$	$\int \sec x \tan x dx = \sec x + C$
$\int \csc x \cot x dx = -\csc x + C$	$\int \tan x dx = \ln \sec x + C$
$\int \cot x dx = \ln \sin x + C$	$\int \sec x dx = \ln \sec x + \tan x + C$
$\int \csc x dx = \ln \csc x - \cot x + C$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{u}{a} + C, \ a > 0$
$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$	$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \frac{u}{a} + C$
$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left \frac{x + a}{x - a} \right + C$	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$