

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2014 SESSION

SUBJECT CODE	:	NMB21104
SUBJECT TITLE	:	SOLID MECHANICS
LEVEL	:	BACHELOR
TIME / DURATION	:	9.00 PM – 12.30 PM (3.5 HOURS)
DATE	:	10 JANUARY 2015

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of SIX (6) questions. Answer FOUR (4) questions only.
- 6. Answer all questions in English.
- 7. Formulas, Shapes, Geometric and Properties Tables is appended

THERE ARE 4 PAGES OF QUESTIONS AND 3 PAGES OF APPENDIX, EXCLUDING THIS PAGE.

INSTRUCTION: Answer only FOUR questions. Please use the answer booklet provided.

Question 1

A wide flange beam with cross sectional area as shown in the Figure 1 below is loaded with multiple forces.

Figure 1

i. Express the internal shear and moment in terms of x.

(10 marks)

ii. Draw the shear and moment diagrams for the beam.

(8 marks)

iii. Determine the position and the magnitude of the absolute maximum bending (flexural) stress.

(7 marks)

Question 2

The rigid bar is supported by the pin-connected rod CB as shown in the Figure 2 that has a cross-sectional area of 14 mm² and is made from 2014-T6 aluminium. Determine the vertical deflection of the bar at D when the distributed load is applied.

Figure 2

(25 marks)

Question 3

The state of stress at a point on the surface of loaded beam is shown on the element in the Figure 3. Use Mohr's circle to determine the principal stresses and maximum in-plane shear stress. Show all necessary sketches.

(25 marks)

Question 4

The steel tank (specific weight of γ_{st} = 78 kN/m³) in shown in the Figure 4 has an inner radius of 600 mm and a thickness of 12 mm. It is filled to the top with water (specific weight of γ_w = 10 kN/m³). Determine the state of stress at point *A*. The tank is open at the top.

(25 marks)

Question 5

The steel cantilevered beam in the Figure 5 is loaded as shown. Determine:

	The share the sum of family a second the same of the same surface of the surface of	a dia a ta
1.	The elastic curve for the cantilevered beam using the x coo	rdinate
	The clacke carrent and carrier of a beath doing the X coo	i an iato

(13 marks)

ii. The maximum slope and the maximum deflection

(12 marks)

Use E = 200 GPa.

Figure 5

Question 6

a. The A-36 steel W200 x 46 member shown in the Figure 6 is to be used as a pinconnected column. Determine the largest axial load it can support before it either begins to buckle or the steel yields.

Figure 6

(15 marks)

b. A steel tube with an outer diameter of 60 mm is used to transmit 7000 W when rotating at 30 rev/min. Determine the inner diameter *d* of the tube to the nearest mm if the allowable shear stress is $\tau_{allow} = 70$ MPa.

(10 marks)

END OF QUESTION

APPENDIX

Matorial	Density ρ (Mg/m³)	E (GPa)	G (GPa)	Yield Strength (MPa)			Poisson's	Coef. Of Thermal	
Wateria				Tens.	Comp.	Shear	Ratio	Exp α (10 ⁻⁶ / [°] C)	
Aluminium 2014-T6	2.79	73.1	27	414	414	172	0.35	23	
Steel A-36	7.85	200	75	250	250	-	0.32	12	

	Aroo	Donth	Web	Flange	Flange		x-x axis	5		y-y axis	
Designation	Δ	d	thickness	width	thickness	I	S	r	Ι	s	r
mm x kg/m	(mm^2)	(mm)	t _w	b _f	tr	10 ⁶	(10 ³	(mm)	10 ⁶	(10 ³	(mm)
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(11111)	(mm)	(mm)	(mm)	mm⁴	mm ³⁾	(11111)	mm⁴	mm ³⁾	(11111)
W200 x 46	5890	203	7.24	203	11	45.5	448	87.9	15.3	151	51
W360 x 45	5710	352	6.86	171	9.8	121	688	146	8.16	95.4	37.8

Simply Supported Beam Slopes and Deflections

Beam	Slope	Deflection	Elastic Curve		
$\begin{array}{c} v \\ -\frac{L}{2} \\ $	$\theta_{\max} = \frac{-PL^2}{16EI}$	$v_{\rm max} = \frac{-PL^3}{48EI}$	$v = \frac{-Px}{48EI}(3L^2 - 4x^2)$ $0 \le x \le L/2$		
$\begin{array}{c c} v & \mathbf{P} \\ \theta_1 & \mathbf{P} \\ \theta_2 & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \\ \theta_2 & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \\$	$\theta_1 = \frac{-Pab(L+b)}{6EIL}$ $\theta_2 = \frac{Pab(L+a)}{6EIL}$	$v\Big _{x=a} = \frac{-Pba}{6EIL}(L^2 - b^2 - a^2)$	$v = \frac{-Pbx}{6EIL}(L^2 - b^2 - x^2)$ $0 \le x \le a$		
	$\theta_1 = \frac{-M_0 L}{3EI}$ $\theta_2 = \frac{M_0 L}{6EI}$	$v_{\rm max} = \frac{-M_0 L^2}{\sqrt{243}EI}$	$v = \frac{-M_0 x}{6EIL} (x^2 - 3Lx + 2L^2)$		
$\begin{array}{c} v \\ \downarrow \\$	$\theta_{\max} = \frac{-wL^3}{24EI}$	$v_{\rm max} = \frac{-5wL^4}{384EI}$	$v = \frac{-wx}{24EI}(x^3 - 2Lx^2 + L^3)$		
$\begin{array}{c} v \\ \downarrow \\$	$\theta_1 = \frac{-3wL^3}{128EI}$ $\theta_2 = \frac{7wL^3}{384EI}$	$v \Big _{x=L/2} = \frac{-5wL^4}{768EI}$ $v_{\text{max}} = -0.006563 \frac{wL^4}{EI}$ $\text{at } x = 0.4598L$	$v = \frac{-wx}{384EI} (16x^3 - 24Lx^2 + 9L^3)$ $0 \le x \le L/2$ $v = \frac{-wL}{384EI} (8x^3 - 24Lx^2 + 17L^2x - L^3)$ $L/2 \le x < L$		
$\begin{array}{c} v \\ \hline \\ \theta_1 \\ L \\ \hline \\ \theta_2 \\ \hline \\ \theta_1 \\ \hline \\ \theta_2 \\ \hline$	$\theta_1 = \frac{-7w_0L^3}{360EI}$ $\theta_2 = \frac{w_0L^3}{45EI}$	$v_{\text{max}} = -0.00652 \frac{w_0 L^4}{EI}$ at $x = 0.5193 L$	$v = \frac{-w_0 x}{360 EIL} (3x^4 - 10L^2 x^2 + 7L^4)$		

SEPTEMBER 2014

CONFIDENTIAL

 $I_x = \frac{1}{12}bh^3$ $I_y = \frac{1}{12}hb^3$

Rectangular area $A = \frac{1}{2}bh$ $I_x = \frac{1}{36}bh^3$ - h Triangular area $\checkmark A = \frac{1}{2}h(a+b)$ ·a $\frac{1}{3}\left(\frac{2a+b}{a+b}\right)h$ Trapezoidal area <u>.</u>.... $I_x = \frac{1}{8}\pi r^4$ $I_y = \frac{1}{8}\pi r^4$ Semicircular area $-A = \pi r^2$ $I_x = \frac{1}{4}\pi r^4$ $l_y = \frac{1}{4}\pi r^4$ = Ix+Iy μπι Circular area $\frac{2}{5}a$ $A = \frac{2}{3}ab$ zero slope зb Semiparabolic area ____<u>ab</u> $\frac{3}{10}b$ zero slope

Exparabolic area

-A = bh

$$\begin{split} U_i &= \frac{N^2 L}{2AE} \quad \text{constant axial load} \\ U_i &= \int_0^L \frac{M^2 dx}{EI} \quad \text{bending moment} \\ U_i &= \int_0^L \frac{f_s V^2 dx}{2GA} \quad \text{transverse shear} \\ U_i &= \int_0^L \frac{T^2 dx}{2GJ} \quad \text{torsional moment} \end{split}$$

NMB 21104 SOLID MECHANICS

ii

Axial Load

Normal Stress

$$\sigma = \frac{P}{A}$$
Displacement
$$\delta = \int_{0}^{L} \frac{P(x)dx}{A(x)E}$$

$$\delta = \sum \frac{PL}{AE}$$

$$\delta_{T} = \alpha \, \Delta TL$$

Torsion

Shear stress in circular shaft

$$au = \frac{T
ho}{J}$$

where

$$J = \frac{\pi}{2}c^4 \text{ solid cross section}$$
$$J = \frac{\pi}{2}(c_o^4 - c_i^4) \text{ tubular cross section}$$

Power

$$P = T\omega = 2\pi fT$$

Angle of twist

$$\phi = \int_0^L \frac{T(x)dx}{J(x)G}$$
$$\phi = \Sigma \frac{TL}{JG}$$

Average shear stress in a thin-walled tube

q

$$\tau_{\rm avg} = \frac{T}{2tA_m}$$

Shear Flow

$$= \tau_{\rm avg} t = \frac{T}{2A_m}.$$

Bending

Normal stress

$$\sigma = \frac{My}{I}$$

Unsymmetric bending

$$\sigma = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y}, \qquad \tan \alpha = \frac{I_z}{I_y} \tan \theta$$

Shear

Average direct shear stress

$$au_{\mathrm{avg}} = rac{V}{A}$$

Transverse shear stress

Shear flow

$$q = \tau t = \frac{VQ}{I}$$

 $\sigma_1 = \frac{pr}{t} \qquad \sigma_2 = \frac{pr}{2t}$

 $\sigma_1 = \sigma_2 = \frac{pr}{2t}$

 $\tau = \frac{VQ}{It}$

Stress in Thin-Walled Pressure Vessel

Sphere

y.,

Stress Transformation Equations

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2}\cos 2\theta + \tau_{xy}\sin 2\theta$$

$$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2}\sin 2\theta + \tau_{xy}\cos 2\theta$$

Principal Stress

$$\tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2}$$
$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Maximum in-plane shear stress

$$\tan 2\theta_s = -\frac{(\sigma_x - \sigma_y)/2}{\tau_{xy}}$$
$$\tau_{\max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$\sigma_{\text{avg}} = \frac{\sigma_x + \sigma_y}{2}$$

Absolute maximum shear stress

$$\tau_{\rm abs} = \frac{\sigma_{\rm max} - \sigma_{\rm min}}{2}$$
$$\sigma_{\rm avg} = \frac{\sigma_{\rm max} + \sigma_{\rm min}}{2}$$

NMB 21104 SOLID MECHANICS