UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION
 SEPTEMBER 2014 SESSION

SUBJECT CODE	$:$ FKD22302
SUBJECT TITLE	$:$ MATHEMATICS FOR TECHNOLOGISTS 3
LEVEL	$:$ DIPLOMA
TIME / DURATION	$:$8.00 PM - 10.00 PM (2 HOURS)
DATE	$: \quad 2$ JANUARY 2015

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) question only.
6. Answer all questions in English.
7. Fomula is appended.

SECTION A (Total: 30 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

Determine all partial derivatives of $z(x, y)=2 x^{3}+5 x y^{2}-5$, at $x=3, y=2$.

Question 2

Evaluate $\int_{0}^{1} \int_{y}^{2-y} e^{3 x} d x d y$. Leaving your answers to 3 decimal places.

Question 3

Given the position vectors $\overrightarrow{O P}, \overrightarrow{O Q}$ and $\overrightarrow{O R}$
$\overrightarrow{O P}=\underset{\sim}{i}+2 j$
$\overrightarrow{O Q}=3 i+5 j+k$
$\overrightarrow{O R}=4 i+k$

Determine:
a) $\quad \overrightarrow{P Q}$
b) $\quad \overrightarrow{Q R}$
c) $\quad \overrightarrow{P Q} \bullet \overrightarrow{Q R}$

Question 4

If $\underset{\sim}{x}=2 \underset{\sim}{i}+\underset{\sim}{j}$ and $y=\underset{\sim}{i}+7 \underset{\sim}{j}$, determine the values of m if $3 \underset{\sim}{x}+2 m y$ is parallel to x -axis.

Question 5

Events A and B are independent such that $P(A)=0.2$ and $P(B)=0.7$. Determine:
a) $\quad P(A \cap B)$.
b) $\quad P(A \cup B)$.

Question 6

Given that $n=11$ measurements: $3,5,7,6,9,4,11,2,4,6,1$.
a) Calculate the mean (Leaving your answer to 3 decimal places).
b) Determine the median.
c) State the mode.

SECTION B (Total: 20 marks)

INSTRUCTION: Answer TWO questions only.

Please use the answer booklet provided.

Question 1

The vertices of a parallelepiped are: $A(3,-2,1), B(5,-4,0)$ and $A(0,1,1)$.
a) Determine position vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$.
b) Determine $\overrightarrow{O A} \times \overrightarrow{O B}$.
c) Calculate the volume of parallelepiped.

Question 2

FIGURE 1 shows a survey of 498 people from different age groups on the understanding of Goods and Services Tax (GST). The survey is categorized into Understand group and Not understand group. (Resources: Public opinion survey 2014 Peninsular Malaysia Voter Survey).

FIGURE 1
From FIGURE 1,
a) Determine the total number of people in the not understand group category.
(2 marks)
b) Complete the Frequency Distribution Table for the understand group category given in APPENDIX 3.
c) Draw an Ogive (Cumulative Frequency Graph) representing the Table in APPENDIX 3.
d) Refer to the Ogive in (c), determine the percentage of people who understand about GST in the group below, leaving your answers to 2 decimal places.
i. Below than 35 years.
ii. More than 40 years.

Question 3

One bag contains 4 white balls and 3 black balls. If 2 balls are picked at random without replacement,
a. Copy and complete the following Tree Diagram.

b. Determine the following probabilities:
i. If the two balls are of the same color.
ii. If the two balls are of different color.

APPENDIX 1

Table of Differentiation

Trigonometric Functions - GENERAL FORM
$\frac{d}{d x} \inf \ll \cos f<x f^{\prime}<$
$\frac{\mathrm{d}}{\mathrm{dx}} \operatorname{Cosf} \underset{\boldsymbol{x}}{\boldsymbol{x}}-\sin \mathrm{f} \times \mathrm{f}^{\prime}$
$\frac{\mathrm{d}}{\mathrm{dx}}(\operatorname{anf})=\sec ^{2} \mathrm{f} \leqslant \mathrm{x}^{\prime}<$

$\frac{\mathrm{d}}{\mathrm{dx}}\left(\operatorname{ecf}<\overline{=} \sec f \geqslant \tan \mathrm{x}<\mathrm{f}^{\prime}<\right.$
$\frac{d}{d x} \cot \int \underset{\sim}{x}=-\csc ^{2} \mathrm{x}<\mathrm{f}^{\prime}$

Exponential Function - GENERAL FORM

$$
\frac{\mathrm{d}}{\mathrm{dx}}{ }^{\mathrm{f}}=\mathrm{e}^{\mathrm{f}} \mathrm{f}^{\prime}
$$

Logarithmic Function - GENERAL FORM

$$
\frac{\mathrm{d}}{\mathrm{dx}} \ln \mathbb{N}=\frac{\mathrm{f}^{\prime}}{\mathrm{f}}
$$

APPENDIX 2

Table of Integration

Trigonometric Functions - GENERAL FORM Where : $f=a x+b$
$\int \operatorname{cosf} d x=\frac{\sin f}{\mathrm{f}^{\prime}}+\mathrm{C}$
$\int \sin \mathrm{f}$ dx $=\frac{-\operatorname{cosf}}{\mathrm{f}^{\prime}}+\mathrm{C}$
$\int \sec ^{2} \mathrm{f} d \mathrm{dx}=\frac{\tan \mathrm{f}}{\mathrm{f}}$
$\int \operatorname{secf} \tan \mathrm{f}$ dx $=\frac{\operatorname{secf}}{\mathrm{f}}+\mathrm{C}$
$\int \csc \int \operatorname{cotf} d x=\frac{-\operatorname{cscf}}{f^{\prime}}+C$
$\int \csc ^{2} \mathrm{f} d \mathrm{dx}=\frac{-\cot \mathrm{f}}{\mathrm{f}}+\mathrm{C}$

Exponential Function - GENERAL FORM

$$
\begin{aligned}
& \text { Where : } f \backslash=a x+b \\
& \int \mathrm{e}^{\mathrm{f}} \mathrm{dx}_{\mathrm{d}}=\frac{\mathrm{e}^{\mathrm{f}}}{\mathrm{f}^{\prime}}+\mathrm{C}
\end{aligned}
$$

Logarithmic Function - GENERAL FORM

$$
\begin{aligned}
& \text { Where : } f(\mathrm{x}=a x+b \\
& \int_{\mathrm{f}} \frac{1}{\mathrm{f}^{\prime}} \mathrm{dx}=\frac{\ln \mid \mathrm{f}]}{}+\mathrm{C}
\end{aligned}
$$

APPENDIX 3

NAME: \qquad
STUDENT ID NUMBER: \qquad
SEAT NO: \qquad

Please attach the APPENDIX 3 in the answer booklet provided.

FREQUENCY DISTRIBUTION TABLE

CLASS	CLASS BOUNDARY	FREQUENCY, (f)	CUMULATIVE FREQUENCY
$21-30$			
$31-40$			
$41-50$			
$51-60$			
>60			

