Document No : UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2014 SESSION

SUBJECT CODE : FCB21003

SUBJECT TITLE : DUCTING AND PIPING NETWORK

LEVEL : BACHELOR

TIME / DURATION : 9.00 AM – 12.00 PM

(3 HOURS)

DATE : 9 JANUARY 2015

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. Duct calculator is allowed to perform duct sizing.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. The drawings need to be returned with the answer booklet.
- 6. This question paper consists of ONE (1) section only. Answer ALL questions.
- 7. Answer all questions in English.

THERE ARE 3 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIXES.

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

Appendixes 1 to 5 show a 5-storey library floor layout. The chiller plant room and cooling

tower plant are located at the ground floor which is just next to the store, and there is an air

handling unit (AHU) room on each floor. The air conditioning system installed for the building

shall be the water-cooled chiller system. The ceiling height of ground floor and 1st floor to 4th

floor are 15ft and 12 ft, respectively from the floor level, whilst the space above the ceiling is

limited to 3.5 ft for the ducting and piping installation purposes.

(a) Referring Appendix 1 to 6, estimate

i. the total supply air (cfm) and return air (cfm) for each area for 1st floor.

(10 Marks)

ii. the cooling capacity (Btu/hr) for each area for the 1st floor.

(10 Marks)

Question 2

Based on your calculation in Question 1, sketch your proposed ducting layout in a single line diagram complete with duct dimensions and air flow rate at each diffusers/grilles for the 1st

floor for its air conditioning system.

(20 Marks)

1

Question 3

(a) Based on your calculation in Question 1, sketch your proposed piping layout complete with pipe dimension and water flow rate in a single line diagram for both chilled water and condenser water systems for the whole building.

(10 Marks)

- (b) Show typical connection for
 - i. Air handling unit

(5 Marks)

ii. Condenser water pump

(5 Marks)

Question 4

Based on your proposed ducting and piping layout in Question 2 and 3,

(a) Calculate the total external static pressure (" w.g) for the air conditioning ducting system.

(8 Marks)

(b) Select the correct AHU model from the catalogue provided based on your calculation above.

(2 Marks)

(c) Calculate the total head (ft w.g) for the chilled water system.

(8 Marks)

(d) Select the correct chilled water pump from the catalogue provided based on your calculation above.

(2 Marks)

Question 5

During testing and commissioning of the air handling unit for the library, your technicians have collected data for the AHUs installed at the 2nd floor, shown in Appendix 7 and 8 and submitted to you as the HVAC engineer. Based on the test report,

(a) fill in the spaces labeled with (a), (b), (c), (d) and (e).

(5 Marks)

(b) analyse the data and propose the remedy work, if any.

(15 Marks)

END OF QUESTION

Appendix 6

UniKL - MALAYSIA FRANCE INSTITUTE

COOLING LOAD

Table 1: Design Cooling Load Check Figure:

	Eξ	ŝlG	N	ΑN	D (co	0L	ΙN	G	L	DΑ	D	CH	ΙE	Cl		FI(Ġί	JR	Ę	3						
Applications		cupan t / Pe	-,		ighting ts / Sc	g Ft		resh / Per		ĊFI	Air M/S	q Ft	Se	Room ensib	le			tal (igera Ft / T			pply . VI / Sc	
	Lo	Avg	Hi	Lo	Avg	Hi	Lo	Avg	Hi	Lo	Avg	Hi	Lo	Avg	Hi	Lo .	Avg	Hi	Lo	Avg	Hi	Lo	Avg	н	Lo	Avg	Hi
Apartments (Flats) Auditoriums, Theaters	150 15	100 10	50 5	1.0 1.0	2.0 2.0	4.0 3.0	25 5.0	35 15	40 30	.25 .50	.35 1.5	.50 2.5	15 25	25 35	45 50	20 45	30 55	50 70	30 60	40 80				200 100	.75 1.25		1.75 2.5
Educational Facilities Classrooms Laboratories Cafeteria-Coffee House	30 75 20	25 60 15	20 40 10	2.0 2.0 1.5	4.0 3.0 3.0	6.0 6.0 4.5	5.0 10 7.5	7.5 15 10	10 20 15	.20 .20 .40	.30 .40 .60	.40 .60 .80	25 30 25	40 40 45	55 55 65	35 35 35	50 45 60	65 65 75	45 45 55	60 60 80	75	275	200 200 150	160	1.0	1.4 1.4 1.5	1.8 1.8 2.1
Factories Public Areas Light Manufacturing Heavy Manufacturing**	50 200 300 20	35 150 250 15	25 100 200 10		4.5 10.0‡ 45.0‡ 1.5	6.0 12.0‡ 60.0‡ 2.0		10 10 10 10	15 15 15 15	.10 .05 .03 .50	.25 .10 .08 .75	.50 .15 .10 1.0	20 35 75 30	45 55 115 35		30 40 80 40	60 60 120 50	85 80 160 70	50 60 120 60	80 150	200		150 150 80 150	90 100 60 100	1.5 3.0	2.25 2.75 4.0 1.1	1 .
Hospitals Patient Rooms† Public Areas Laboratories Libraries Doctors Clinics	100 130 150 150 150	60 100 100 100 100	40 65 50 50	1.0 2.0 2.0 2.0 2.0	2.0 3.0 5.0 4.0 4.0	3.0 4.0 10.0 6.0 6.0	75 10 20 5.0 20	90 20 30 7.5 25	100 30 50 10 30	.75 .25 .20 .10		1.0 .30	15 10 25 20 20	35 15 45 30 40	50 35 60 50	25	40 20 55 35 45	55 40 70 55 65	60 30 45 30 40		100 100 70	400 275 400	100 275 175 275 200	75 120 120 175 150	.75 1.0 1.0		1.7 1.7 2.0 1.7 2.0
Offices Private General-Perimeter General-Interior Conference Rooms Restaurants	150 125 125 45 25	125 100 100 30 20	100 75 75 15	4.0 4.0 4.0 4.0 1.5	6.0 6.0 6.0 6.0 1.7	8.0 8.0 8.0 8.0 2.0	20 10 10 20 10	25 15 15 30 15	30 20 20 50 20	.15 .40	.40 .25 .25 1.0 .75	.40	25 20 15 30 30	50 35 20 55 35	70 30 80	30 25 20 40 40	40 25 65	80 75 35 90 70	40 30 25 60	75 50 30 85 85	85 40 120	400 475 200	175 250 400 150	150 300 100	1.0 75	1.7 1.2 1.0 1.8 1.5	2.4 2.3 1.1 2.7 2.0
Shopping Centers Beauty & Barber Shops Department Stores -Basement -Main Floor -Upper Floors Specialty Shops	45 40 40 80 40 40 60	40 30 25 50 30 25 40 50	25 20 20 40 25 20 30 40	3.01 3.0 4.0 2.0 2.0 3.0 1.0 2.0	5.04 4.0 6.04 4.0 3.0 4.0 1.5 3.0	5.0	5.0 5.0 10 5.0 5.0	15 7.5 7.5 5.0 15 7.5 7.5 7.5	10	.10 .15 .05 .25	.25 .10 .35 .25	.15 .50 .35	25 15 30 25 10	35 30 35 25 35 35 35 35	45 45 35 45 45 25	25 30 20 40 30 15	30 45 40 20	40 55 50 30	50 35 40 30 60 40 25 40	60 45 50 40 65 50 30 50	60 60 50 75 60 40	325 300 400 200 300	275 250 300 180 250 400	200 250 160 200 300	1.0 .80 1.25 1.0	1.4 1.5 1.0	2.0 1.75 2.0 1.2 2.0 2.0 1.5 2.0

Refrigeration loads are for entire application.
 Includes other equipment loads expressed in watts/sq ft.
 Air quantities shown are for all-air systems.
 Air quantities for heavy manufacturing areas are based on supplementary means to remove excessive heat.

Appendix 7

Location :

FAN TEST SHEET

	Manufacturer	-		Serial No.	-
	Туре	-		Model No.	-
F	Size (MM)	-			
Α		Unit	Design		Test
Ν	Volume	CFM	45,000		(a)
	Speed	RPM	(b)		(b)
М	Manufacturer	TEC		Output HP	25
0	Туре	TEF	·C	Frame No.	(c)
Т	Serial No	-		Full Load Current	(d)
0	Voltage, V	41:		Running Current	32.00
R				Design	Test
	Speed	RPM		(e)	(e)
D	Manufacturer	Ban		Fan Pulley Dia.	5.5"
R	Type	V-b	elt	Fan Shaft Dia.	38mm
I	Belt Size	C3		Motor Pulley Dia.	5"
V	No. Of Belt	3		Motor Shaft Dia.	38mm
Е					
S	Manufacturer	Telemech	nanique	O/Load Range	25 - 40A
Т	Type	Autoti	ans	Timer Setting	5s
Α	O/Load Setting	38,	Д		
R					
Т					
Е					
R			·		•
REN	IARKS:-		•	•	
		•			_

Appendix 8

:

ĺ	LOCATION	DESIGN VOLUME	DUCT SIZE (" X ")	DUCT AREA	DESIGN VELOCITY
ĺ		45,000 CFM	100 X 36	SQFT	M/S

VELOCITY PROFILE (facing air flow)

	LEFT←							\rightarrow RIGHT	
	1	2	3	4	5	6	7	8	
4	8.6	8.8	8.9	8.8	8.6	8.6	8.7	8.5] 7
3	8.7	8.6	8.6	8.7	8.6	8.9	8.5	8.6	
0	8.5	8.7	8.7	8.9	8.7	8.8	8.4	8.4	F
)	8.6	8.9	8.5	8.6	8.5	8.5	8.3	8.5] 1
Ξ	8.4	8.5	8.4	8.5	8.8	8.4	8.2	8.4	
=									
3									
1									
l] ``E
J									
<] 7
_									7
Л									
	<u>, </u>		-		Total Vel	ocity (m/s)		-	N

AVERGE VELOCITY	TEST VOLUME	PERCENTAGE	
M/S	CFM		

REMAR	KS :			
		<u>Company</u>	<u>Signature</u>	<u>Name</u>
Performed by	:			
Checked by	:			