UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION

SEPTEMBER 2014 SESSION

SUBJECT CODE	$:$ FMD20202
SUBJECT TITLE	$:$ FLUID MECHANICS
LEVEL	$:$ DIPLOMA
TIME / DURATION	$:$(2 HOURS) DATE
	$: 10$ JANUARY 2015

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer ALL questions in Section A. For Section B, answer TWO (2) questions only.
6. Answer all questions in English.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Define 'fluid mechanics'.
(b) Differentiate between 'fluid statics' and 'fluid dynamics'.
(c) Name FIVE (5) applications of fluid mechanics.
(d) Briefly explain the term 'Bulk Modulus'.
(e) State 'Pascal's law'.
(f) Explain the different between 'gage pressure' and 'absolute pressure'.
(g) Define the term 'viscosity'.

Question 2

A rigid cylinder of 0.1 m diameter contains SAE 30 oil, as shown in Figure 1 below. If a pressure of $1 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ is applied, calculate the distance of the piston move downward?
(12 marks)

Figure 1

Question 3

(a) For a tank containing ethyl alcohol under air pressure, as shown in Figure 2, find the pressure at the bottom of the tank, $\mathrm{P}_{\text {bottom }}(\mathrm{kPa})$.
(10 Marks)

Figure 2
(b) In the manometer of Figure 3, fluid A is water and fluid B is mercury. What is the absolute pressure $P_{1}(\mathrm{kPa})$?
(10 Marks)

Figure 3

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.

Please use the answer booklet provided.

Question 4

A spherical buoy is anchored to a reverbed with a cable as shown in Figure 4. This buoy is designed to float so that it can be seen above the river's water surface. At times, however the water level rises such that the buoy is completely submerged.
If the buoy has a diameter 1.0 m and a material density of $750 \mathrm{~kg} / \mathrm{m}^{3}$:
(a) Calculate the weight, $W(\mathrm{~N})$ of the buoy.
(b) Find the buoyancy force, $F_{B}(N)$.
(c) Use the free body diagram (FBD) to find the tension in the cable, T (N)
(7 Marks)

(a) Buoy completely submerged

(b) FBD of buoy

Figure 4

Question 5

For the system gate of Figure 5, the height of the triangular gate is 0.866 m . Calculate the;
(i) Resultant force, $F_{R}(\mathrm{~N})$
(10 Marks)
(ii) Point of application, $h_{c p}$ (m)
(10 Marks)

Figure 5

Question 6

For the system of Figure 6, $\mathrm{h}=40 \mathrm{~m}$ and the diameter of the side opening is 0.008 m . If the liquid is water, find the:
i. Jet velocity, v_{2} in m / s
(10 Marks)
ii. Volume flow rate, Q in $\mathrm{m}^{3} / \mathrm{s}$
(10 Marks)

Figure 6

APPENDICES: FORMULAE AND TABLES

$S g=\frac{\gamma}{\gamma_{\text {water at } 4^{\circ} \mathrm{C}}}$	$\gamma_{\text {water at } 4^{\circ} \mathrm{C}=9810 \mathrm{~N} / \mathrm{m}^{3}}$	$\beta=\frac{-\Delta \mathrm{P}}{\Delta \mathrm{V} / \mathrm{V}}$
$V_{\text {cylinder }}=\pi r^{2} h$	$W=m g$	$g=9.82 \mathrm{~m} / \mathrm{s}^{2}$
$p_{\text {abs }}=p_{\text {gage }}+p_{\text {atm }}$	$p_{\text {atm }}=101 \mathrm{kPa}$	$V_{\text {sphere }}=\frac{4}{3} \pi r^{3}$
$p=\gamma h$	$F=p A=\gamma h A$	$F_{B}=\gamma_{\text {fluid }} \times V_{\text {Body }}$
$h_{c p}=\frac{\bar{I}_{X}}{\bar{h} A}+\bar{h}$	$v=\sqrt{2 g h}$	$Q=V A$

Table 1: List of Formulae.

Table 2: Properties of some common plane areas.

Liquid	Specific weight $\left(\mathrm{N} / \mathrm{m}^{3}\right)$	Density $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Carbon tetrachloride	15,600	1,590
Ethyl alcohol	7,730	788
Gasoline	6,630	676
Mercury	133,000	13,600
SAE 30 oil	8,720	889
Seawater	10,050	1,024
Water	9,790	998

Table 3: Specific weight and density of common liquids. (SI units at $20^{\circ} \mathrm{C}$)

Gas	Specific weight $\left(\mathrm{N} / \mathrm{m}^{3}\right)$	Density $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
Air	12.0	1.23
Helium	1.63	0.166
Hydrogen	0.822	0.0838
Methane	6.54	0.667
Nitrogen	11.4	1.16
Oxygen	13.0	1.33

Table 4: Specific weight and density of common gases.
(SI units at atmospheric pressure and $20^{\circ} \mathrm{C}$)

Liquid	Bulk Modulus () (MPa)
Carbon tetrachloride	1,130
Ethyl alcohol	1,060
Gasoline	1,300
Mercury	28,500
SAE 30 oil	1,500
Seawater	2,340
Water	2,150

Table 5: Typical bulk modulus values of common liquids

