UNIVERSITI KUALA LUMPUR
 Malaysia France Institute

FINAL EXAMINATION
 SEPTEMBER 2014 SESSION

SUBJECT CODE	$:$ FLD30103
SUBJECT TITLE	$:$ POWER ELECTRONIC AND DRIVES
LEVEL	$:$ DIPLOMA
TIME / DURATION	$: 2.00$ PM - 4.30 PM
	$(2.5$ HOURS)
DATE	$: 5$ JANUARY 2015

INSTRUCTIONS TO CANDIDATES

1. Please read the instructions given in the question paper CAREFULLY.
2. This question paper is printed on both sides of the paper.
3. Please write your answers on the answer booklet provided.
4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) question only.
6. Answer all questions in English.
7. Fomula is appended.

THERE ARE 5 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Draw the symbols IGBT and GTO.

> (4 marks)
(b) List four types of Power Electronic Conversion.
(c) Give the definition of power electronics and describe the system using block diagram.
(10 mark)

Question 2

(a) Explain the different types of uncontrolled and controlled switches in terms of switching method and give an example of the switches for each type.
(8 marks)
(b) Draw the positive single-phase uncontrolled half-wave rectifier and full-wave centertapped rectifier with resistive load and explain the operation of each rectifier.
(12 marks)

Question 3

(a) Draw a circuit diagram for Boost Converter and explain the operation of the circuit when switch in the circuit is on and off.
(b) Explain the principles of phase control for AC voltage controller in Figure 1.

Figure 1
(c) Give the definition and list two applications of dc to ac converter (inverter).
(4 marks)
(d) Draw a circuit diagram for single-phase inverter and explain the operation.

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only

Please use the answer booklet provided.

Question 4

(a) A single-phase half-wave controlled rectifier is connected to 120 V ac, 50 Hz source. The output of the rectifier is connected to a 100 ohm resistive load. If the average output voltage $\left(\mathrm{V}_{\mathrm{DC}}\right)$ is $30 \mathrm{~V}_{\mathrm{DC}}$, determine:
i. the delay angle α
ii. the rms and average output current
iii. the power absorbed by the load
iv. the apparent power supplied by the source
v. the input power factor
(b) Prove that the average value of output voltage $\left(\mathrm{V}_{\mathrm{dc}}\right)$ of single phase full-wave rectifier with resistive load is $V_{d c}=\frac{2 V_{m}}{\pi}$.

$$
\text { Where } V_{d c}=\left[\frac{1}{T} \int_{o}^{T / 2}\left(V_{m} \sin \omega t\right) d t\right]
$$

Question 5

The DC converter in the Figure 2 has a resistive load, $R_{L}=20 \Omega$ and input voltage, $V_{s}=120$ V . When the converter switch remains on, its voltage drop is $\mathrm{V}_{\mathrm{ch}}=1.5 \mathrm{~V}$ and the chopping frequency is 5 kHz . If the duty cycle is 80%, determine
(a) the average output voltage
(b) the rms output voltage V_{0}
(c) the converter efficiency
(d) the effective input resistance R_{i}

Figure 2

Question 6

The AC voltage controller in Figure 3 is connected to a resistive load $R=20 \Omega$ and the input supply voltage $\mathrm{Vs}=110 \mathrm{~V}(\mathrm{rms}), 50 \mathrm{~Hz}$. The thyristor is on for $\mathrm{n}=100$ cycles and is off for m $=50$ cycles.
(i) Explain the operation of on-off control of the circuit.
(ii) Calculate the rms output voltage $\left(\mathrm{V}_{\mathrm{O}(\mathrm{ms})}\right)$
(iii) Determine the input power factor (PF).
(iv) Calculate the average and rms thyristor current ($I_{A}=\frac{k I_{m}}{\pi}, I_{R}=\frac{I_{m} \sqrt{k}}{2}$)

Figure 3

APPENDIX

AC to DC Formulas

1. $V_{L(a v e)}=\frac{V_{m}}{\pi}$
2. $I_{L(\text { ave })}=\frac{V_{m}}{\pi R_{L}}$
3. $V_{L(r m s)}=\frac{V_{m}}{2}$
4. $I_{L(r m s)}=\frac{V_{m}}{2 R_{L}}$
5. $I_{L(r m s)}=\frac{V_{m}^{L}}{2 R_{L}}$
6. $V_{L(\text { ave })}=\frac{V_{m}}{2 \pi}[1+\cos \alpha]$
7. $V_{L(r m s)}=\frac{V_{m}}{2} \sqrt{1-\frac{\alpha}{\pi}+\frac{\sin 2 \alpha}{2 \pi}}$
8. $V_{L(\text { ave })}=\frac{V_{m}}{\pi}[1+\cos \alpha]$
9. $V_{L(r m s)}=V_{m} \sqrt{\frac{1}{2}-\frac{\alpha}{\pi}+\frac{\sin 2 \alpha}{2 \pi}}$
10. $S=I_{r m s} \times V_{i r m s}$
11. $P=I_{r m s} \times V_{o r m s}$
12. $p \cdot f=\frac{P}{S}$

Trigonometro Function

1. $\int \sin ^{2} x d x=\int \frac{1-\cos 2 x}{2} d x$
2. $\int \sin x d x=-\cos x$
3. $\int \cos n x d x=\frac{\sin n x}{2}$

DC to DC Converter

1. $V_{a}=k\left(V_{S}-V_{c h}\right)$
2. $V_{a}=\sqrt{k}\left(V_{S}-V_{c h}\right)$
3. $P_{o}=\frac{k\left(V_{S}-V_{c h}\right)^{2}}{R}$
4. $P_{i}=\frac{k\left(V_{S}\left(V_{S}-V_{c h}\right)\right)}{R}$
5. $R_{i}=\frac{R}{k}$

AC Voltage Controller

1. $k=\frac{n}{n+m}$
2. $V_{0}=V_{S} \sqrt{k}$
3. $P f=\frac{V_{0}}{V_{s} I_{s}}$
4. $I_{A}=\frac{k I_{m}}{\pi}$
5. $I_{R}=\frac{I_{m} \sqrt{k}}{2}$
