Document No : UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2014 SESSION

SUBJECT CODE : FLD30102

SUBJECT TITLE : POWER ELECTRONIC

LEVEL : DIPLOMA

TIME / DURATION : 2.00 PM – 4.30 PM

(2.5 HOURS)

DATE : 5 JANUARY 2015

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answer should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) question only.
- 6. Answer all questions in English.
- 7. Fomula is appended.

THERE ARE 5 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) **Draw** the symbols **IGBT** and **GTO**.

(4 marks)

(b) **List** four types of Power Electronic Conversion.

(6 marks)

(c) **Give** the definition of power electronics and **describe** the system using block diagram.

(10 mark)

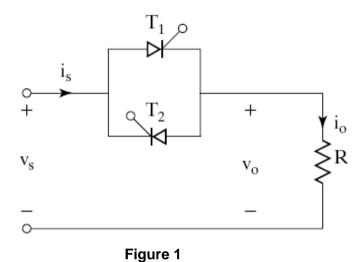
Question 2

(a) **Explain** the different types of uncontrolled and controlled switches in terms of switching method and give an example of the switches for each type.

(8 marks)

(b) **Draw** the positive single-phase uncontrolled half-wave rectifier and full-wave centertapped rectifier with resistive load and **explain** the operation of each rectifier.

(12 marks)


Question 3

(a) **Draw** a circuit diagram for Boost Converter and **explain** the operation of the circuit when switch in the circuit is on and off.

(5 marks)

(b) **Explain** the principles of phase control for AC voltage controller in **Figure 1**.

(5 marks)

(c) **Give** the definition and **list** two applications of dc to ac converter (inverter).

(4 marks)

(d) **Draw** a circuit diagram for single-phase inverter and **explain** the operation.

(6 Marks)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only

Please use the answer booklet provided.

Question 4

- (a) A single-phase half-wave controlled rectifier is connected to 120 V_{ac} , 50 Hz source. The output of the rectifier is connected to a 100 ohm resistive load. If the average output voltage (V_{DC}) is 30 V_{DC} , determine:
 - i. the delay angle α
 - ii. the rms and average output current
 - iii. the power absorbed by the load
 - iv. the apparent power supplied by the source
 - v. the input power factor

(15 marks)

(b) Prove that the average value of output voltage (V_{dc}) of single phase full-wave rectifier with resistive load is $V_{dc}=\frac{2V_m}{\pi}$.

Where
$$V_{dc} = \left[\frac{1}{T} \int_{0}^{T/2} (V_m \sin \omega t) dt \right]$$

(5 marks)

Question 5

The DC converter in the Figure 2 has a resistive load, $R_L = 20~\Omega$ and input voltage, $V_s = 120~V$. When the converter switch remains on, its voltage drop is $V_{ch} = 1.5~V$ and the chopping frequency is 5 kHz. If the duty cycle is 80%, determine

- (a) the average output voltage
- (b) the rms output voltage V_0
- (c) the converter efficiency
- (d) the effective input resistance R_i

(20 marks)

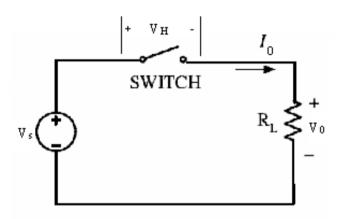


Figure 2

Question 6

The AC voltage controller in **Figure 3** is connected to a resistive load $R = 20 \Omega$ and the input supply voltage Vs = 110 V (rms), 50 Hz. The thyristor is on for n = 100 cycles and is off for m = 50 cycles.

- (i) Explain the operation of on-off control of the circuit.
- (ii) Calculate the rms output voltage (V_{O(rms)})
- (iii) Determine the input power factor (PF).
- (iv) Calculate the average and rms thyristor current $(I_A = \frac{kI_m}{\pi}, I_R = \frac{I_m\sqrt{k}}{2})$ (20 marks)

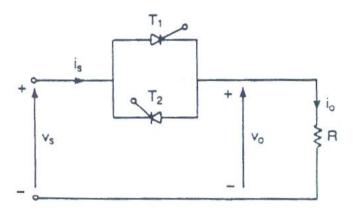


Figure 3

END OF QUESTION PAPER

APPENDIX

AC to DC Formulas

1.
$$V_{L(ave)}=rac{V_m}{\pi}$$

2.
$$I_{L(ave)} = \frac{V_m}{\pi R_L}$$

3.
$$V_{L(rms)} = \frac{V_m}{2}$$

4.
$$I_{L(rms)} = \frac{V_m}{2R_L}$$

$$5. \quad I_{L(rms)} = \frac{V_m^L}{2R_L}$$

6.
$$V_{L(ave)} = \frac{V_m}{2\pi} [1 + \cos\alpha]$$

7.
$$V_{L(rms)} = \frac{V_m}{2} \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin 2\alpha}{2\pi}}$$

8.
$$V_{L(ave)} = \frac{V_m}{\pi} [1 + \cos \alpha]$$

9.
$$V_{L(rms)} = V_m \sqrt{\frac{1}{2} - \frac{\alpha}{\pi} + \frac{\sin 2\alpha}{2\pi}}$$

10.
$$S = I_{rms} \times V_{irms}$$

11.
$$P = I_{rms} \times V_{orms}$$

12.
$$p.f = \frac{P}{S}$$

Trigonometro Function

$$1. \int \sin^2 x dx = \int \frac{1 - \cos 2x}{2} dx$$

$$\int \sin x dx = -\cos x$$

$$3. \int \cos nx dx = \frac{\sin nx}{2}$$

DC to DC Converter

1.
$$V_a = k(V_S - V_{ch})$$

$$2. V_a = \sqrt{k} (V_S - V_{ch})$$

3.
$$P_o = \frac{k(V_S - V_{ch})^2}{R}$$

4.
$$P_i = \frac{k(V_S(V_S - V_{ch}))}{R}$$

5.
$$R_i = \frac{R}{k}$$

AC Voltage Controller

1.
$$k = \frac{n}{n+m}$$

$$V_0 = V_S \sqrt{k}$$

$$\mathbf{3.} \quad Pf = \frac{V_0}{V_s I_s}$$

$$I_A = \frac{kI_m}{\pi}$$

$$I_R = \frac{I_m \sqrt{k}}{2}$$