Document No : UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2014 SESSION

SUBJECT CODE : FLD20403

SUBJECT TITLE : DIGITAL SYSTEM

LEVEL : DIPLOMA

TIME / DURATION : 2.00 PM - 5.00 PM

(3 HOURS)

DATE : 30 DECEMBER 2014

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 4 PAGES OF QUESTIONS, EXCLUDING THIS PAGE AND APPENDIX.

SEPTEMBER 2014 CONFIDENTIAL

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Convert 1011011101₂to hexadecimal and decimal (4 marks)

(b) Convert the octal number (36.065)₈ to binary and hexadecimal (4 marks)

(c) Perform the following operations by using an 8-bit, 2's

i.
$$-29_{10} + (-43_{10})$$
 (4 marks)

ii.
$$-66_{10} - (-75_{10})$$
 (4 marks)

(d) The $110\ 0101_2 + 1110\ 1000_2$ is an 8-bit, 2's complement number.

Perform the operation. Convert the answer to decimals. (4 marks)

(e) Add the following decimals numbers in BCD, and verify the answer in decimals

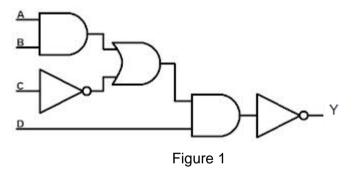
$$39_{10} + 69_{10}$$
 (4 marks)

(f) Add the following Hexadecimal number. Show your work.

$$DA1_{16} - 2E4_{16}$$
 (2 marks)

Question 2

Simplify the following Boolean expressions using the De'Morgan theorems and/or Boolean algebra.


(a)
$$M = \overline{A}C + \overline{A}\overline{C}D + ABC + AB\overline{C}D$$
 (4 marks)

(b)
$$Q = A\overline{B} + \overline{C}D + EF$$
 (4 marks)

Question 3

Based on the logic circuit of Figure 1:

- (a) Determine the Boolean expression for the output Y (4 marks)
- (b) Simplify the expression determined in (a) using the De'Morgan theorems and/or Boolean algebra. (4 marks)
- (c) Draw the simplified circuit of expression (b) (4 marks)

Question 4

Implement the following Boolean expression with a 4 x 1 multiplexer

$$J(A, B, C, D) = \sum_{m} (0, 1, 3, 4, 8, 9, 15)$$

- (a) Tabulate the truth table (8 marks)
- (b) Draw the circuit (6 marks)

SEPTEMBER 2014 CONFIDENTIAL

SECTION B (Total: 40 marks)

INSTRUCTION: Answer only TWO (2) questions

Please use the answer booklet provided.

Question 5

Implement the truth table of Table 1 given below using any basic logic gate and:

(a) A single 3-to-8 Decoder and any simple logic gate (7 marks)

(b) A single 8-to-1 Multiplexer and any simple logic gate (7 marks)

(c) A single 4-to-1 Multiplexer and any simple logic gate (6 marks)

Table 1

Input			Output
а	b	С	Υ
0	0	0	1
0	0	1	0
0	1	0	Х
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	Х
1	1	1	1

SEPTEMBER 2014 CONFIDENTIAL

Question 6

(a) Figure 2 shows a 3-bit synchronous counter using JK flip flop.

i. Derive the input equations for each flip-flop. (3 marks)
ii. Determine the MOD number of the counter. (3 marks)
iii. Draw the state table and state diagram for the circuit (6 marks)

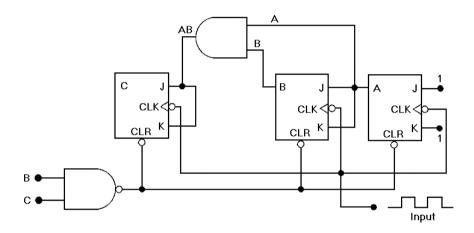


Figure 2

- (b) How many FFs are required for the MOD-60 counter? (2 marks)
- (c) Construct a MOD-10 counter that will count from 0000 through 1001 (6 marks)

Question 7

Design a combinational circuit that converts a 4-bit gray code to a 4-bit binary number.

(a) Tabulate its truth table (8 marks)

(b) Simplify the expression using K-map (7 marks)

(c) Implement the circuit using exclusive-OR gates (5 marks)

END OF QUESTION PAPER

SEPTEMBER 2014 CONFIDENTIAL

APPENDIX

Boolean algebra and De Morgan's theorems

1.
$$X \bullet 0 = 0$$

2.
$$X \bullet 1 = X$$

3.
$$X \bullet X = X$$

$$A = X \bullet \overline{X} = 0$$

6.
$$X+1=1$$

$$7. \quad X + X = X$$

8.
$$X + \overline{X} = 1$$

9.
$$X + Y = Y + X$$

10.
$$X \bullet Y = Y \bullet X$$

4.
$$X \bullet \overline{X} = 0$$
 11. $X + (Y + Z) = (X + Y) + Z = X + Y + Z$
5. $X + 0 = X$ 12. $X(YZ) = (XY)Z = XYZ$

12.
$$X(YZ) = (XY)Z = XYZ$$

$$13a.X(Y+Z) = XY + XZ$$

$$13b.(W+X)(Y+Z) = WY + XY + WZ + XZ$$

$$14. X + XY = X$$

$$15.X + \overline{X}Y = X + Y$$

16.
$$\overline{X+Y} = \overline{X} \, \overline{Y}$$

$$17.\overline{XY} = \overline{X} + \overline{Y}$$

$$18. \overline{A} = A$$