Document No : UniKL MFI_SD_AC41 Revision No: 02 Effective Date: 01 December 2008

SET A

UNIVERSITI KUALA LUMPUR Malaysia France Institute

FINAL EXAMINATION SEPTEMBER 2014 SESSION

SUBJECT CODE : FED10402

SUBJECT TITLE : ELECTRICAL DISTRIBUTION

LEVEL : DIPLOMA

TIME / DURATION : 12.45 PM – 2.45 PM

(2 HOURS)

DATE : 31 DECEMBER 2014

INSTRUCTIONS TO CANDIDATES

- 1. Please read the instructions given in the question paper CAREFULLY.
- 2. This question paper is printed on both sides of the paper.
- 3. Please write your answers on the answer booklet provided.
- 4. Answers should be written in blue or black ink except for sketching, graphic and illustration.
- 5. This question paper consists of TWO (2) sections. Section A and B. Answer all questions in Section A. For Section B, answer two (2) questions only.
- 6. Answer all questions in English.

THERE ARE 6 PAGES OF QUESTIONS EXCLUDING THIS PAGE AND APPENDICES.

SECTION A (Total: 60 marks)

INSTRUCTION: Answer ALL questions.

Please use the answer booklet provided.

Question 1

(a) Names three (3) types of turbines that mainly used in hydroelectric power station.

(3 marks)

(b) State the type of generating power station in a **Figure 1**. Names the blanks parts from i to v in the system below.

(7 marks)

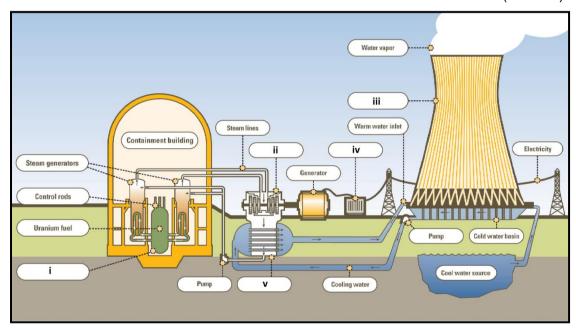


Figure 1

- (c) List three (3) advantages of using three phase system upon the single phase system. (3 marks)
- (d) List three (3) advantages of thermal power plants compared to the other power plants.

(3 marks)

(e) List four (4) types of generating system can be categorized as the electrical renewable energy.

(4 marks)

Question 2

(a) List four (4) general procedures the electrical designer needs to follow in designing an electrical system for large installations.

(4 marks)

(b) A consumer lives in a bungalow with a detached garage and workshop, as shown in Figure 2. The mains electrical power supply is at high level, and comprises an 80 A BS 3871 230 V main MCB type 2 and a seven-way 80 A distribution board with MCB type 2 as follows:

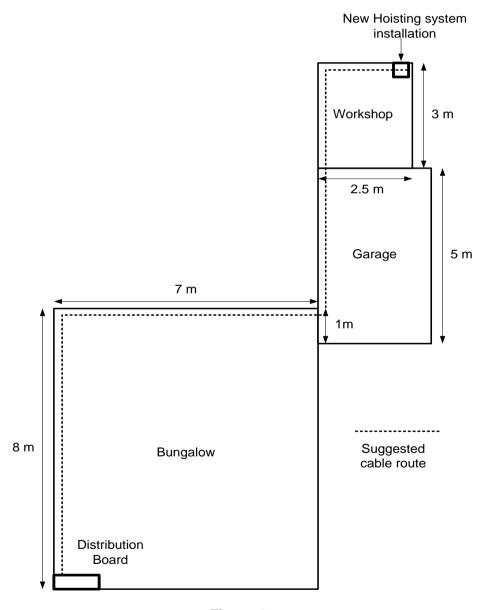


Figure 2

Switch socket outlet ring circuit with 30 A rated MCB

- 10 nos 40W fluorescent lamps
- 4 nos 60 W ceiling fan
- 1 unit of 3 kW instantaneous water heater
- 1 unit of 5 kW cooker unit + 5A Switch socket outlet
- 1 unit of 2 Hp air conditioner
- Spare way
- (i) Calculate the design current (I_b) for the whole installation in the house.

(10 marks)

(ii) Determine the nominal current (I_N) value suitable for overall circuit.

(3 marks)

(iii) Calculate the current carrying capacity value (I_Z) if the ambient temperature at installation is 34°C and not group with another cable.

(4 marks)

(iv) Determine the tabulated current (I_t) as shown in table 4D1A (**refer to appendix**) and also the right cable sizing for this main installation by using clipped direct.

(4 marks)

(v) The consumers wishes to install an hoisting system in his workshop with capacity maximum 6 kW, 230 V. Calculate the I_b, I_N, I_Z (Ca at 34°C), cable sizing for this new load and new maximum demand for the entire building.

(10 marks)

(vi) Calculate also the voltage drop of the new design installation.

Hint:
$$V_d = \frac{\frac{mV}{A} \times I_b \times L}{1000}$$
 V

(5 marks)

(Refer to technical data attached for reference)

SECTION B (Total: 40 marks)

INSTRUCTION: Answer TWO (2) questions only.

Please use the answer booklet provided.

Question 3

(a) A hydroelectric power plant is supplied from a reservoir 10⁷ m³ at a head of 100 m. Find out the energy available if the overall efficiency is 70 %.

(8 marks)

(b) The rating of nuclear power plant is 6 MW. Overall thermal efficiency is 29%. The fuel is U²³⁵. Calculate the amount of natural uranium required to generate the power if the average energy release per fission for the fuel is 190 MeV.

(12 marks)

Hints:

1 eV =
$$1.6 \times 10^{-19} \text{ J}$$

1 W = 1 J/s = $6.24 \times 10^{12} \text{ MeV/s}$
Avogadro's number = 6.02×10^{23}

Question 4

(a) Draw the schematic wiring diagram for :

(i) light up 2 number of incandescent lamps by using one way switch.

(5 marks)

(ii) power up 2 number of Switch Socket outlet (SSO 13 A) by using ring circuit.

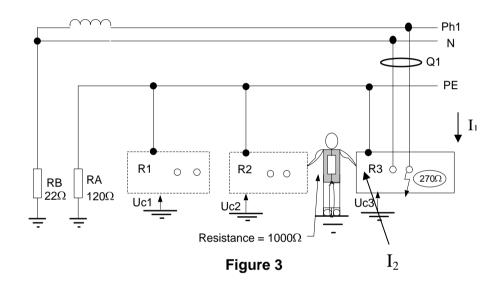
(5 marks)

(b) State the types of tripping unit inside the circuit breaker. Names three types of circuit breaker used in the High Voltage applications.

(5 marks)

(c) Explain briefly the operation of residual current devices (RCD) in the healthy and abnormal electricity condition.

(5 marks)


Question 5

(a) State five types of earthing systems which have been discussed in IEE Regulation 16th Edition. Draw and explain one type of the earthing system in detail.

(6 Marks)

(b) State three (3) reasons why earthing system is important in electrical installations. (4 Marks)

(c) Refer to the diagram in **Figure 3**. The voltage supply in each phase is 130 V.

i. Determine the type of earthing system applied to the diagram in **Figure 3**. Justify your answer.

(3 marks)

ii. Calculate the value of voltage at Uc 1, Uc 2 and Uc 3 and give the limit voltage for every room, ($U_L 1$, $U_L 2 \& U_L 3$).

(4 marks)

iii. Calculate the value of current l₂ which flow through the body of victim.

(3 marks)

END OF QUESTION PAPER

APPENDICES / ATTACHMENT FILE

FED10402: ELECTRICAL DISTRIBUTION

LIST	CONTENTS
APPENDIX A	Table of Correction Factors for Ca,Cg & Ci
APPENDIX B	Table of Corrections Factors of Mineral insulated and Allowance for Diversity
APPENDIX C	Table 4A: Method of wiring installation
APPENDIX D	Table 4A: Method of wiring installation continued
APPENDIX E	Table 4D1A & Table 4D1B
APPENDIX F	Table 4D4A & Table 4D4B
APPENDIX G	Table 4F1A & Table 4F1B
APPENDIX H	Table 4F2A & Table 4F2B
APPENDIX I	Figure A : Time vs Current characteristics fuses to BS
APPENDIX J	Time vs Current characteristics MCB Type 1& Type 2 to BS 3871
APPENDIX K	Time vs Current characteristics MCB Type 3 & Type B to BS 3871
APPENDIX L	MCB Catalogue

APPENDIX A

TABLE 4C1 Correction factors for ambient temperature where protection is against short-circuit

NOTE: This table applies where the associated overcurrent protective device is intended to provide short-circuit protection only. Except where the device is a semi-enclosed fuse to BS 3036 the table also applies where the device is intended to provide overload protection.

							Aml	bient t	emper	ature	(°C)					
Type of insulation	Operating temperature	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95
Rubber (flexible cables only)	60 °C	1.04	1.0	0.91	0.82	0.71	0.58	0.41	-	,	-	-	-	-	-	-
General purpose pvc	70 °C	1.03	1.0	0.94	0.87	0.79	0.71	0.61	0.50	0.35	-	-	-	-	-	-
Paper	80 °C	1.02	1.0	0.95	0.89	0.84	0.77	0.71	0.63	0.55	0.45	0.32	-	-	-	-
Rubber	85 °C	1.02	1.0	0.95	0.90	0.85	0.80	0.74	0.67	0.60	0.52	0.43	0.30	-	-	-
Heat resisting pvc*	90 ℃	1.03	1.0	0.97	0.94	0.91	0.87	0.84	0.80	0.76	0.71	0.61	0.50	0.35	-	-
Thermosetting	90 °C	1.02	1.0	0.96	0.91	0.87	0.82	0.76	0.71	0.65	0.58	0.50	0.41	0.29	-	-
Mineral	70 °C sheath 105 °C sheath	1.03 1.02							0.45 0.75		- 0.65	0.60	- 0.54	- 0.47	- 0.40	0.32

NOTES:

- Correction factors for flexible cords and for 85 °C and 180 °C rubber-insulated flexible cables are given in the relevant table of current-carrying capacity.
- 2. This table also applies when determining the current-carrying capacity of a cable.
- 3. * These factors are applicable only to ratings in columns 2 to 5 of Table 4D1A.

TABLE 4B1

Correction factors for groups of more than one circuit of single-core cables, or more than one multicore cable (to be applied to the corresponding current-carrying capacity for a single circuit in Tables 4D1 to 4D4, 4E1 to 4E4, 4F1 and 4F2, 4J1, 4K1 to 4K4, 4L1 to 4L4)**

							Corre	ection	factor	(Cg)					
Reference method of installa	tion				N	umbe	r of ci	rcuits	or mu	lticore	cable	es			
(see Table 4A)		2	3	4	5	6	7	8	9	10	12	14	16	18	20
Enclosed (Method 3 or 4) or clipped direct to a non-metal (Method 1)		0.80	0.70	0.65	0.60	0.57	0.54	0.52	0.50	0.48	0.45	0.43	0.41	0.39	0.38
Single layer clipped to a non-metallic surface	Touching	0.85	0.79	0.75	0.73	0.72	0.72	0.71	0.70	-	-	-	-	-	-
(Method 1)	Spaced*	0.94	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Single layer multicore on a perforated metal cable tray,	Touching	0.86	0.81	0.77	0.75	0.74	0.73	0.73	0.72	0.71	0.70	-	-	-	-
vertical or horizontal (Method 11)	Spaced*#	0.91	0.89	0.88	0.87	0.87	1	-	1	-	-	-	-	-	-
Single layer single-core on a perforated metal	Horizontal	0.90	0.85	-	-	1	-	-	-	-	-	-	-	-	-
cable tray, touching (Method 11)	Vertical	0.85	1	-	-	-	-	-	-	-	-	-	-	-	-
Single layer multicore touchi on ladder supports (Method	_	0.86	0.82	0.80	0.79	0.78	0.78	0.78	0.77	-	-	-	-	-	-

- * Spaced by a clearance between adjacent surfaces of at least one cable diameter (De). Where the horizontal clearances between adjacent cables exceeds 2 De no correction factor need be applied.
- ** When cables having differing conductor operating temperatures are grouped together, the current rating shall be based upon the lowest operating temperature of any cable in the group.
 Correction factor not tabulated.
- # Not applicable to mineral insulated cables see Table 4B2.

Table 52A : Cable surround	ed by thermal insulation (Ci)
Length in insulation mm	Derating factor
50	0.89
100	0.81
200	0.68
400	0.55

APPENDIX B

Table 4	4B2 : Corrections factors for	Mineral in	sulated	l cables i	nstalled	on Perfo	rmed Tray	7
Tray	Arrangement of Cables	Number		Number	of multi	core cable	es of circui	ts
Orientation	Arrangement of Cables	of Trays	1	2	3	4	6	9
Horizontal	Multiconductor cables touching	1	1.0	0.90	0.80	0.80	0.75	0.75
Horizontal	Multiconductor cables spaced	1	1.0	1.0	1.0	0.95	0.90	ı
Vertical	Multiconductor cables touching	1	1.0	0.90	0.80	0.75	0.75	0.70
Vertical	Multiconductoe cables spaced	1	1.0	0.90	0.90	0.90	0.85	-
Horizontal	Multiconductor cables trefoil separated	1	1.0	1.0	0.95			
Vertical	Multiconductor cables trefoil separated	1	1.0	0.90	0.90			

Maximum demand = Diversity allowance x Sum of total connected load

Table 6.2 - Allowance for diversity

Note the following abbreviations:

X is the full load current of the largest appliance or circuit

Y is the full load current of the second largest appliance or circuit

Z is the full load current of the remaining appliances or circuits

Type of final circuit	Ту	pe of premises	
	Households	Small shops, stores, offices	Hotels, guest houses
Lighting	66% total demand	90% total demand	75% total demand
Heating and power	100% up to 10 A + 50% balance	100%X + 75%(Y+Z)	100%X + 80%Y + 60%Z
Cookers	10 A + 30% balance + 5 A for socket	100%X + 80%Y + 60%Z	100%X + 80%Y + 60%Z
Motors (but not lifts)		100%X + 80%Y + 60%Z	100%X + 50%(Y+Z)
Instantaneous water heaters	100%X + 100%Y + 25%Z	100%X + 100%Y + 25%Z	100%X + 100%Y + 25%Z
Thermostatic water heaters	100%	100%	100%
Floor warming installations	100%	100%	100%
Thermal storage heating	100%	100%	100%
Standard circuits	100%X + 40%(Y+Z)	100%X + 50%(Y+Z)	100%X + 50%(Y+Z)
Sockets and stationary equip.	100%X + 40%(Y+Z)	100%X + 75%(Y+Z)	100%X + 75%Y + 40%Z

APPENDIX C

		TABLE 4A				TABLE 4A (continued)		
	Schedule of Install	Schedule of Installation Methods of Cables (including Reference Method)	ce Method)	ä	Installation method			
Number	Installation method Description	Examples	Appropriate Reference Method for determining	Number	Description	Examples	Appropriate Reference Method for determining current-carrying capacity	
			current-carrying capacity	-	2	3	4	1
	2	3	4	9	Sheathed cables in	2	Method 4	F
ā	Open and clipped direct: Sheathed cables clipped	Here H. St. Here H. St.	Method 1	-	insulating wall etc. (otherwise as Reference			
	direct to or lying on a non-metallic surface				(† poins)			
				7	Cables in conduit embedded in masonry, brickwork concrete		Method 3	ı
es	Cables embedded direct in building materials:	ing materials:			plaster or the like (other			
7	Sheathed cables embedded directly in masonry, brickwork,		Method 1		than thermally insulating materials)			
	concrete, plaster or the			In trunking:	.bi			ı
	insulating materials)	0 0 0 0 0 0 0		∞	Cables in trunking on a wall or suspended in the air		Method 3	I
ğ	In conduit:							
ေ	Single-core non-sheathed cables in metallic or non-metallic		Method 3			000		
	ceiling			6	Cables in flush floor trunking		Method 3	I
4	Single-core non-sheathed cables in metallic or non-metallic conduit in a thermally		Method 4			9		
	insuating wai of above a thermally insulating ceiling, the conduit being in contact with a thermally conductive surface on one side †			10	Single-core cables in skirting trunking		Method 3	1
5	Multicore cables having non-metallic sheath in		Method 3					
	metallic or non-metallic			On trays:				1
	conduit on a wall or ceiling	0.0		11	Sheathed cables on a perforated cable tray, bunched and unenclosed. A nerforated cable tray		Method 11	1
m a	all is assumed to consist of an like material having a coeffici	† The wall is assumed to consist of an outer weatherproof skin, thermal insulation and an inner skin of plasterboard or wood-like material having a coefficient of heat transfer not less than 10 W/m²K. The conduit is fixed so as to be	d an inner skin of plasterboard The conduit is fixed so as to be		is a ventilated tray in which the holes occupy 30 % or more of			
close to, t skin only	but not necessarily touching,	the inner skin, Heat from the captes is assum	ed to escape through the inner		the surface area			

3

† The wall is assumed to consist of an outer weatherproof skin, thermal insulation and an inner skin of plasterboard or wood-like material having a coefficient of heat transfer not less than 10 W/m/K. The conduit is fixed so as to be close to, but not necessarily fouching, the inner skin. Heat from the cables is assumed to escape through the inner skin only.

	Al	PPEN	ND	1		i	1	1			
		Appropriate Reference Method for determining current-carrying capacity	4	1	Method 4 Where the cable has a diameter De and the duct has a diameter not greater than 50 De Method 3 Where the duct has either not greater than 20 De Method 3 Where the duct has either a diameter greater than 20 De Perimeter a diameter greater than 20 De NOTE 1 - Where the perimeter is greater than 60 De, installation Methods 18 to 20, as appropriate, should be sued. NOTE 2 - De is the overall cable diameter. For groups of cables De is the sum of the cable diameter.		Method 12 or 13, as appropriate	Method 18 Use rating factors in Table 483			
TABLE 4A (continued)		Examples	3		***************************************		000	ses	minimum of one cable diameter.	& & XX	Multicore cables or single-core cables with surfaces separated by a minimum of 50 mm
	Installation method	Description	2	Chaothad cobles in ducte	Sheared cabos in ducts or voids formed by the building structure, other than thermally insulating materials	Cables in trenches:	Cables supported on the wall of an open or ventilated brench, with spacings as indicated for Reference Method 12 or 13 as appropriate	Cables in enclosed trench 450 mm wide by 300 mm deep (minimum dimensions) including	100 mm cover		
No.	II	Number	-		•	Cables in	71	18			
		Appropriate Reference Method for determining current-carrying capacity	4		Method 12		Method 13		Method 12 or 13, as appropriate		Method 4
TABLE 4A (continued)		Examples	3	ladder:	varietasis of main of		See The second s				
1	Installation method	Description	2	In free air, on cleats, brackets or a ladder	Sheathed single-core cables in free air (any supporting metalwork under the cables coucyping less than 10% of the plan area): Two or three cables wertically one above the other, minimum distance between cable surfaces equal to the overall cable diameter (De); distance from the wall not less than 0.5 De, the or three cables horizontally, with spacings as above Twee cables horizontally, with spacings as above distance between wall and surface of nearest cables 0.5 De or nearest cables 0.75 De	CL AN A	branche wulttone cabbes on ladder or brackets, separation greater than 2 De. Sheathed multicore cabbes in free air distance between wall and cable surface not less than 0.3 De. Any sumnorfing	metalwork under the cables occupying less than 10 % of the plan area	Cables suspended from or incorporating a catenary wire	Cables in building voids:	Sheathed cables installed directly in a thermally insulating wall or above a thermally measuring, the cable being in contact with a thermally contact with a thermally contact with a thermally contact with a thermally side (otherwise as Reference Method 4)
Ĭ	I	Number	-	In free air	12	,	2		41	Cables in	15

APPENDIX E

				(CC	OPPER CO		ORS)					COLUBB
CURREN	T-CARRY	TNG CAP	ACITY (an	nneres):	BS 6 BS 6	6231		Conduc		nt temperat	ure: 30 °C	CONDUCTOR
				•						-	ure. 70 C	
Conductor cross-		Method 4 n conduit in		Method 3 in conduit	Reference	Method 1 d direct)	1000	Method 11		e Method 12	(free air)	. " U/C
sectional		insulating		all or in	(спррес	i direct)		orated cable izontal or		flat spaced	Trefoil	4 4
area		etc.)		ng etc.)	149			tical)	The spaces	Hat spaces		
	2 cables, single- phase	3 or 4 cables, three-	2 cables, single- phase	3 or 4 cables, three-	2 cables, single- phase	3 or 4 cables, three-	2 cables, single- phase	3 or 4 cables, three-	2 cables, single- phase	2 cables, single- phase	3 cables trefoil, three	
ı	a.c. or d.c.	phase a.c.	a.c. or d.c.	phase a.c.	a.c. or d.c. flat and touching	phase a.c. flat and touching or trefoil	a.c. or d.c. flat and touching	phase a.c. flat and touching or trefoil	a.c. or d.c.	a.c. or d.c. or 3 cables three- phase a.c.	phase a.c.	
1	2	3	4	5	6	7	8	9	10	11	12	
(mm ²)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	
1	11	10.5	13.5	12	15.5	14	-				/	NOTES:
1.5	14.5	13.5	17.5	15.5	20	18	-	-		-	-	 Where the conductor is to protected by a semi-enclosed fuse BS 3036, see item 6.2 of the prefa
2.5	19.5	18	24	21	27	25	-	-	-	-	-	to this appendix.
4	26	24	32	28	37	33	- 1	1.00	-	-		2. The current-carrying capacities
6	34	31	41	36	47	43	-	-	-			columns 2 to 5 are also applicable flexible cables to BS 6004 table 1
10	46	42	57	50	65	59	-	19-3		-	-	and to 90 °C heat resisting pvc cal-
16	61	56	76	68	87	79	-	-	-	-		to BS 6231 tables 8 and 9 where cables are used in fixed installations
25	80	73	101	89	114	104	126	112	146	130	110	cables are used in fixed histaliadons
35	99	89	125	110	141	129	156	141	181	162	137	
50	119	108	151	134	182	167	191	172	219	197	167	
70	151	136	192	171	234	214	246	223	281	254	216	
95	182	164	232	207	284	261	300	273	341	311	264	
120	210	188	269	239	330	303	349	318	396	362	308	
150	240	216	300	262	381	349	404	369	456	419	356	
185	273	245	341	296	436	400	463	424	521	480	409	
240	320	286	400	346	515	472	549	504	615	569	485	
300	367	328	458	394	594	545	635	584	709	659	561	
400		. 1	546	467	694	634	732	679	852	795	656	
500	-		626	533	792	723	835	778	982	920	749	
630			720	611	904	826	953	892	1138	1070	855	
800	- 1	10.0	-		1030	943	1086	1020	1265	1188	971	
1000		-			1154	1058	1216	1149	1420	1337	1079	

OLIZ	AUE DE	OP (per	ampere	per metr	e):		100											Conqu	ictor ope	rating ter	nperatu	re: /U
					2 cables	, single-p	hase a.c.	i .							3 or 4	cables, t	three-phas	se a.c.				
Con- ductor cross- sec- tional area	2 cables d.c.	Me (co	Reference ethods 3 enclosed enduit etc r on a wa	& 4 in . in	Mei (cl	Reference thods 1 & lipped dire or on trays touching)	ect	1	Reference Method 1 (spaced*	12	M (cc	Reference lethods 3 of (enclosed conduit etc.) or on a wa	& 4 in . in	Meth	Reference lods 1, 11 (in trefoil	& 12	Me	Reference thods 1 d (flat and touching	& 11 I	1	Reference Method	12
1	F 2		3		-	4	11.1		5			6			7			8			9	
(mm ²)	(mV/ A/m) 44 29		(mV/A/m 44 29	1)	((mV/A/m) 44 29			(mV/A/m 44 29	Û		38 25	i)		38 25)	- (38 25	1)		38 25	1)
2.5 4 6 10 16	18 11 7.3 4.4 2.8		18 11 7.3 4.4 2.8	: .		18 11 · 7.3 4.4 2.8	The state of the s		18 11 7.3 4.4 2.8			15 9.5 6.4 3.8 2.4			15 9.5 6.4 3.8 2.4		ale .	9.5 6.4 3.8 2.4			15 9.5 6.4 3.8 2.4	
25	1.75	r	x	z	r	x	z	r	x	z	r	x	z	r	x	z	r	x	z	r	х	7
25 35	1.75	1.80	0.33	1.80	1.75	0.20	1.75	1.75 1.25	0.29	1.80	1.50	0.29	1.55	1.50	0.175	1.50	1.50	0.25	1.55	1.50	0.32	1.5
50	0.93	0.95	0.31	1.00	0.93	0.193	0.95	0.93	0.28	0.97	0.81	0.27	0.85	0.80	0.170	0.82	0.80	0.24	1.10 0.84	0.80	0.32	0.8
70	0.63	0.65	0.29	0.72	0.63	0.185	0.66	0.63	0.27	0.69	0.56	0.25	0.61	0.55	0.160	0.57	0.55	0.24	0.60	0.55	0.31	0.6
95	0.46	0.49	0.28	0.56	0.47	0.180	0.50	0.47	0.27	0.54	0.42	0.24	0.48	0.41	0.155	0.43	0.41	0.23	0.47	0.40	0.31	0.5
120	0.36	0.39	0.27	0.47	0.37	0.175	0.41	0.37	0.26	0.45	0.33	0.23	0.41	0.32	0.150	0.36	0.32	0.23	0.40	0.32	0.30	0.4
150	0.29	0.31	0.27	0.41	0.30	0.175	0.34	0.29	0.26	0.39	0.27	0.23	0.36	0.26	0.150	0.30	0.26	0.23	0.34	0.26	0.30	0.4
185	0.23	0.25	0.27	0.37	0.24	0.170	0.29	0.24	0.26	0.35	0.22	0.23	0.32	0.21	0.145	0.26	0.21	0.22	0.31	0.21	0.30	0.3
240	0.180	0.195	0.26	0.33	0.185	0.165	0.25	0.185	0.25	0.31	0.17	0.23	0.29	0.160	0.145	0.22	0.160	0.22	0.27	0.160	0.29	0.34
300	0.145	0.160	0.26	0.31	0.150	0.165	0.22	0.150	0.25	0.29	0.14	0.23	0.27	0.130	0.140	0.190	0.130	0.22	0.25	0.130	0.29	0.33
400	0.105	0.130	0.26	0.29	0.120	0.160	0.20	0.115	0.25	0.27	0.12	0.22	0.25	0.105	0.140	0.175	0.105	0.21	0.24	0.100	0.29	0.3
500	0.086	0.110	0.26	0.28	0.098	0.155	0.185	0.093	0.24	0.26	0.10	0.22	0.25	0.086	0.135	0.160	0.086	0.21	0.23	0.081	0.29	0.3
630	0.068	0.094	0.25	0.27	0.081	0.155	0.175	0.076	0.24	0.25	0.08	0.22	0.24	0.072	0.135	0.150	0.072	0.21	0.22	0.066	0.28	0.2
800	0.053		-		0.068	0.150	0.165	0.061	0.24	0.25				0.060	0.130	0.145	0.060	0.21	0.22	0.053	0.28	, 0.29
000	0.042				0.059	0.150	0.160	0.050	0.24	0.24		2		0.052	0.130	0.140	0.052	0.20	0.21	0.044	0.28	0.28

APPENDIX F

Conductor cross- sectional area		e Method 1 d direct)		Method 11	CONOUCTON
			cable tray)	orizontal or vertical or Reference 3 (free air)	
	1 two- core cable, single-phase a.c. or d.c.	1 three- or four- core cable, three-phase a.c.	1 two- core cable, single-phase a.c. or d.c.	1 three- or four- core cable, three-phase a.c.	
1	2	3.	4	5	
(mm ²)	(A)	(A)	(A)	(A)	
1.5	21	18	22	19	NOTE:
2.5	28	25	31	26	Where the conductor is to
4	38	33	41	35	protected by a semi-enclosed fus
6	49	42	53	45	BS 3036, see item 6.2 of the preto this appendix.
10	67	58	72	62	to this appendix
16	89	77	97	83	
25	118	102	128	110	
35	145	125	157	135	
50	175	151	190	163	
70	222	192	241	207	
95	269	231	291	251	
120	310	267,	336	290	
150	356	306	386	332	
185	405	348	439	332	
240	476	409	516	378 445	
300	547	469	592	510	
	5.77	105	372	310	

	VOLTAGE	OROP (per amp	pere per metre	e):		Conductor ope	rating temper	ature: 70 °C
	Conductor cross- sectional	Two-core cable, d.c.	T	wo-core cable, ingle-phase a.c.		Three-	or four-core caree-phase a.c.	
	area	2		. 3			4	
		The state of the s						-
	(mm²)	(mV/A/m)		(mV/A/m)			(mV/A/m)	
	1.5	29		29	- 1		25	
	2.5	18		18	1		15	
ĺ	4	11		11			9.5	
	6	7.3		7.3			6.4	
	10	4.4		4.4			3.8	
	16	2.8		2.8			2.4	
		r - r	r	x	z	r	x	z
	25	1.75	1.75	0.170	1.75	1.50	0.145	1.50
	35	1.25	1.25	0.165	1.25	1.10	0.145	1.10
	50	0.93	0.93	0.165	0.94	0.80	0.140	0.81
	70	0.63	0.63	0.160	0.65	0.55	0.140	0.57
	95	0.46	0.47	0.155	0.50	0.41	0.135	0.43
	120	0.36	0.38	0.155	0.41	0.33	0.135	0.35
	150	0.29	0.30	0.155	0.34	0.26	0.130	0.29
	185	0.23	0.25	0.150	0.29	0.21	0.130	0.25
	240	0.180	0.190	0.150	0.24	0.165	0.130	0.21
	300	0.145	0.155	0.145	0.21	0.135	0.130	0.185
	400	0.105	0.115	0.145	0.185	0.100	0.125	0.160

APPENDIX G

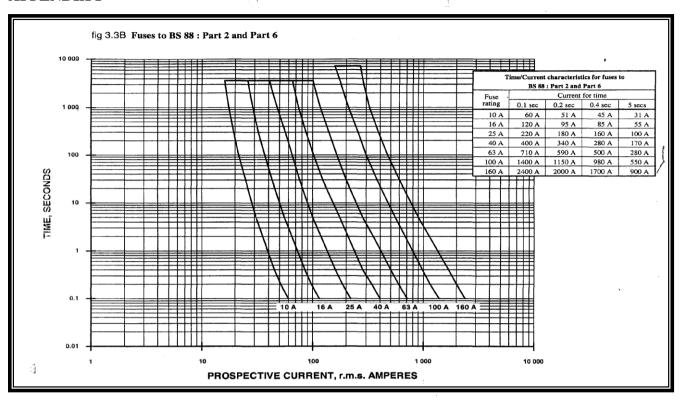
TABLE 4F1A Single-core non-armoured cables having 85 °C rubber insulation (COPPER CONDUCTORS) BS 6007 BS 6883

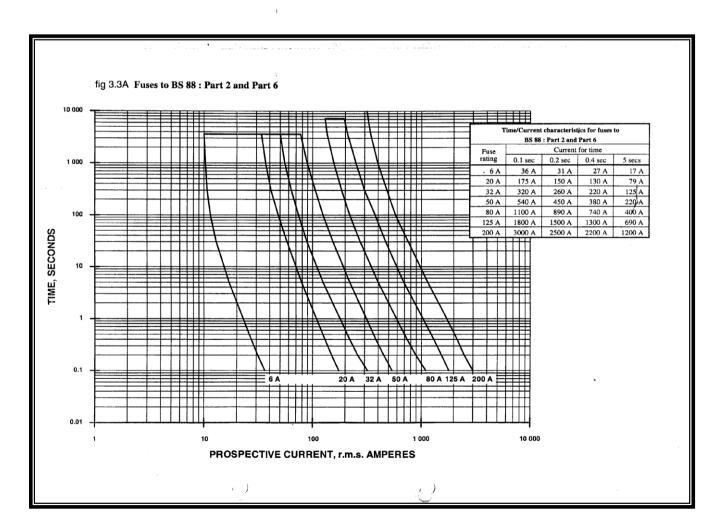
CURRENT-CARRYING CAPACITY (amperes):

Ambient temperature: 30 °C Conductor operating temperature: 85 °C

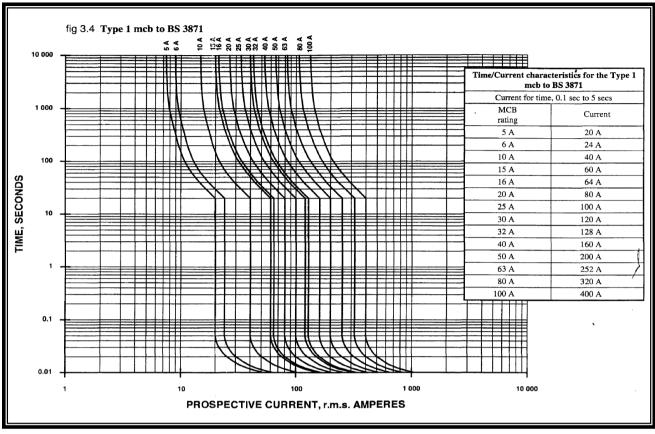
Conductor cross-		Method 3 in conduit		Method 1 direct)		Method 11 ted cable tray)	Reference (free		
sectional	etc. in or	on a wall)		-		or Vertical			
area	2 cables,	3 or 4 cables,	2 cables,	3 or 4 cables,	2 cables,	3 or 4 cables,	2 cables,	3 cables	
	single-phase	three-phase	single-phase	three-phase	single-phase	three-phase	single-phase	trefoil,	
	a.c. or d.c.	a.c.	a.c. or d.c.	a.c.	a.c. or d.c.	a.c.	a.c. or d.c. or	three-phase	
			flat and	flat and	flat and	flat and	3 or 4 cables,	a.c.	
	Į.		touching	touching or	touching	touching or	three-phase		
	ĺ			trefoil		trefoil	a.c. flat spaced horizontal or		
	1)			ì	1	vertical		
1	2	3	4	5	6	7	8	9	
(mm²)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	
1	17	15	19	17.5		-	- 1	-	
1.5	22	19.5	25	23	-	-	! - !	-	
2.5	30	27	34	31	-	-	1 - 1	-	
4	40	36	45	42	-	-	- 1	-	
6	52	46	59	54	-	-	-	-	
10	72	63	81	75	-	-	-	-	
16	96	85	108	100	-	-	1 - 1	-	
25	127	112	143	133	153	140	154	134	
35	157	138	177	164	189	174	192	167	
50	190	167	215	199	229	211	235	204	
70	242	213	274	254	293	269	303	262	
95	293	258	332	308	356	327	370	320	
120	339	298	384	. 357	412	379	431	373	
150	372	334	442	411	475	437	499	432	
185	428	379	519	469	542	499	573	495	
240	510	443	607	553	639	589	679	587	
300	593	506	695	636	735	679	786	680	
400	719	. 602	827	[†] 755	860	798	929	799	
500	835	689	946	. 865	989	918	1081	919	
630	975	791	1088	996	1143	1062	1263	1060	

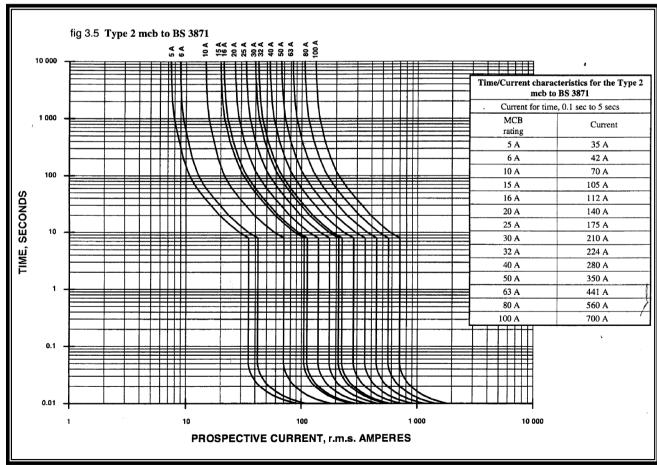
Con-		2 cables, single-phase a.c.						3 or 4 cables, three-phase a.c.																																
ductor cross- sec- tional area	2 cables, d.c.	(e co	Reference Method 3 Inclosed Induit etc.	3 in . in	Me (cl	Reference thods 1 & lipped dire or on trays touching)	: 11 ect	Reference Method 12 (spaced*)		Method 12		Method 12		Method 12		Method 12		Method 12		Method 12		Method 12		Method 12		Method 12		Method 12		Reference Method 3 (enclosed in conduit etc. in or on a wall)		Reference Methods 1, 11 & 12 (in trefoil touching)		& 12 l	Reference Methods 1 & 11 (flat and touching)		& 11 l	Reference Method 12 (flat spaced*)		12
1	2		3.			4			5		6		7		8		9																							
(mm ²)	(mV/ A/m)	(mV/A/m	1)	(mV/A/m)		(mV/A/m)		(mV/A/m) (mV/A/m)		(mV/A/m)		(mV/A/m)		1)																									
1	46		46			46			-			40			40			40			-																			
1.5	31		31			31			-			26		26 26			-																							
2.5	18		18		l	18			_		I	16		l	16			16		l																				
4	12		12			12			-			10			10			10			-																			
6	7.7		7.7			7.7			-			6.7			6.7			6.7			-																			
10 16	4.6		4.6			4.6			-			4.0			4.0			4.0			-																			
10	2.9		2.9		1	2.9		1	-		1	2.5		1	2.5		l 	2.5		1	-																			
25	1.80	r 1.85	x 0.32	z 1.90	r 1.85	x 0.20	z 1.85	r 1.85	x 0.29	z 1.85	1.60	x 0.28	z 1.65	r 1.60	x 0.175	z 1.60	r 1.60	x 0.25	z 1.60	r 1.60	x 0.32	z 1.65																		
											,			'.																										
35 50	1.30 0.95	1.35	0.31	1.40	1.30 0.97	0.195 0.190	1.35	1.30 0.97	0.28	1.35	0.87	0.27	1.20 0.91	1.15 0.84	0.170 0.165	1.15 0.86	1.15 0.84	0.24	1.15 0.88	1.15 0.84	0.32	0.90																		
70	0.95	0.68	0.30	0.74	0.66	0.190	0.69	0.66	0.28	0.72	0.60	0.25	0.65	0.57	0.160	0.60	0.57	0.24	0.62	0.84	0.32	0.65																		
95	0.48	0.51	0.28	0.58	0.49	0.180	0.52	0.49	0.27	0.56	0.44	0.25	0.51	0.43	0.155	0.45	0.43	0.23	0.48	0.42	0.31	0.52																		
														1																										
120	0.38	0.40	0.27	0.49	0.39	0.175	0.43	0.39	0.26	0.47	0.35	0.24	0.43	0.34	0.155	0.37	0.34	0.23	0.41	0.34	0.30	0.45																		
150 185	0.30	0.33	0.27	0.42	0.31	0.175	0.36	0.31	0.26	0.40	0.29	0.24	0.37	0.27	0.150 0.150	0.31	0.27	0.23	0.35	0.27	0.30	0.40																		
240	0.23	0.21	0.27	0.38	0.25	0.170	0.30	0.25	0.25	0.30	0.23	0.23	0.33	0.22	0.130	0.20	0.22	0.22	0.28	0.22	0.30	0.34																		
							:									·																								
300	0.150	0.170	0.26	0.31	0.155	0.165	0.23	0.155	0.25	0.29	0.150	0.23	0.27	0.135	0.140	0.195	0.135	0.22	0.26	0.135	0.29	0.32																		
400	0.115	0.140	0.26	0.30	0.125	0.160	0.20	0.120	0.25	0.28	0.130	0.22	0.26	0.110	0.140	0.175 0.165	0.110	0.21	0.24	0.105	0.29	0.31																		
500 630	0.091	0.115	0.26	0.28 0.27	0.100	0.155 0.155	0.185	0.097	0.24	0.26	0.105	0.22	0.24	0.089	0.135	0.165	0.089	0.21	0.23	0.067	0.29	0.30																		

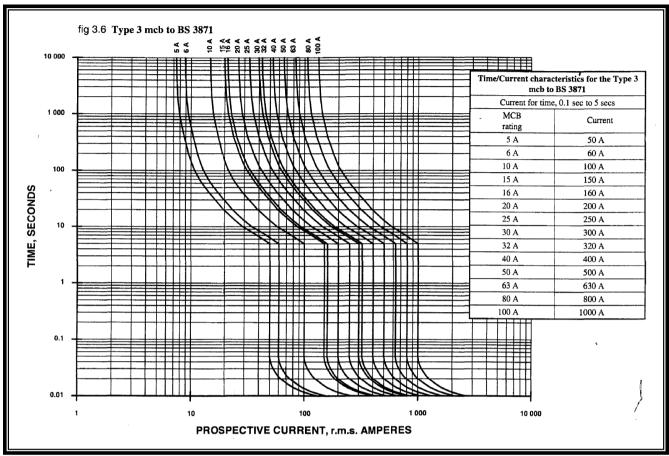

NOTE: * Spacings larger than those specified in Method 12 (see table 4A) will result in larger voltage drop.

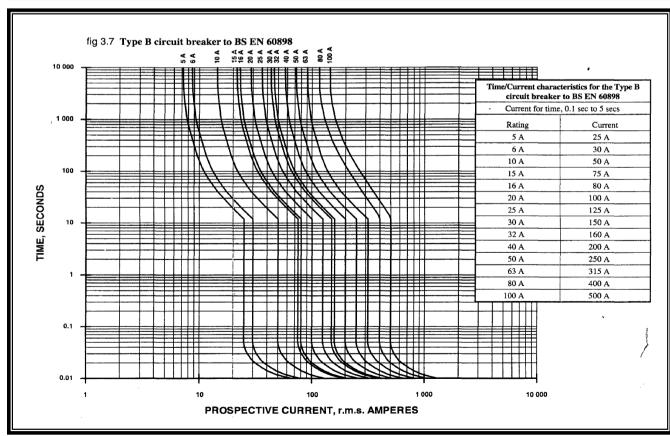

APPENDIX H

	Multicore, sh		TABLE 4F2A armoured cables b PER CONDUCT		ber insulation			
CURRENT-CA	RRYING CAPACI	ΓΥ (amperes):	BS 6883	Co		temperature: 30 °C temperature: 85 °C		
Conductor cross- sectional area		Method 3 osed)		Method 1 d direct)	Reference Method 11 (on a perforated cable tray) or Reference Method 13 (free air)			
	1 two-core cable, single-phase a.c. or d.c.	1 three- or four-core cable, three-phase a.c.	l two-core cable, single-phase a.c. or d.c.	1 three- or four-core cable, three-phase a.c.	1 two-core cable, single-phase a.c. or d.c.	1 three- or four-core cable, three-phase a.c.		
1	2	3	4	5	6	7		
(mm ²)	(A)	(A)	(A)	(A)	(A)	(A)		
1	16.5	14.5	18	16	19.5	17.5		
1.5	21	18.5	23	20	25	22		
2.5	29	25	32	28	34	30		
4	38	33	43	37	46	40		
6	48	43	55	48	59	52		
10	66	58	76	66	81	71		
16	87	77	103	88	109	94		
25	114	100	136	117	144	123		
35	139	122	168	144	177	151		
50	167	147	201	174	213	186		
70	211	185	256	222	272	237		
95	254	222	310	269	329	287		
120	292	256	359	312	381	333		
150	320	287	413	359	438	383		
185	368	326	470	409	499	437		
240	439	381	553	482	587	515		
300	509	436	636	555	675	593		


			TABLE	4F2B					
OLTAGE I	DROP (per amp	ere per metr	e):		Conductor ope	rating temper	ature: 85		
Conductor cross- sectional area	Two-core cable, d.c.		wo-core cable, ngle-phase a.c.		Three- or four-core cable, three-phase a.c.				
1	2		3			4			
(mm ²)	(mV/A/m)		(mV/A/m)			(mV/A/m)			
1	46		46			40			
1.5	31		31		26				
2.5	19		19		16				
4	12		12		10				
6	7.7		7.7		6.7				
10	4.6		4.6		4.0				
16	2.9		2.9		1	2.5			
	l I	r	x	z	r	x	z		
25	1.80	1.85	0.175	1.85	1.60	0.150	1.60		
35	1.30	1.30	0.170	1.35	1.15	0.150	1.15		
50	0.95	0.97	0.170	0.99	0.84	0.145	0.86		
70	0.65	0.66	0.165	0.68	0.58	0.140	0.59		
95	0.48	0.49	0.160	0.52	0.43	0.140	0.45		
120	0.38	0.39	0.160	0.42	0.34	0.135	0.36		
150	0.30	0.31	0.155	0.35	0.27	0.135	0.30		
185	0.25	0.25	0.155	0.30	0.22	0.130	0.26		
240	0.190	0.195	0.150	0.25	0.170	0.130	0.22		
300	0.150	0.155	0.150	0.22	0.135	0.130	0.185		


APPENDIX I




APPENDIX J

APPENDIX K

APPENDIX L

SW ECD

F204, F674

Residual current devices

	rrent devices Praker	GF trip level	Rated current	Catalog number	List price	Dollwary class	Suggested order qty	Wgt. oz (1 Pc.)
F202 F672	Two pole 490Y/277VAC	10mA 30mA	16 25 40 63 80 100	F202AC-16/0.01 F202AC-25/0.03 F202AC-40/0.03 F202AC-63/0.03 F672-80/0.03 F672-100/0.03	\$ 500 300 400 550 1600 2200			
		100mA	25 40 63 80 100	F202AC-25/0.1 F202AC-40/0.1 F202AC-63/0.1 F672-80/0.1 F672-100/0.1	300 400 590 1600 2200	В	1	13.8
		300mA	25 40 63 80 100	F202AC-25/0.3 F202AC-40/0.3 F202AC-63/0.3 F672-80/0.3 F672-100/0.3	300 400 550 1300 1800			
F204 F674	Four pole 490Y/277VAC	30mA	25 40 63 80 100 125	F204AC-25/0.03 F204AC-40/0.03 F204AC-63/0.03 F674-80/0.03 F674-100/0.03 F674-125/0.03	350 450 600 1300 1800			
		100mA	25 40 63 80 100 125	F204AC-25/0.1 F204AC-40/0.1 F204AC-63/0.1 F674-80/0.1 F674-100/0.1 F674-125/0.1	350 450 600 1300 1800 1800	В	1	19.0
		300mA	25 40 63 80 100 125	F204AC-25/0.3 F204AC-40/0.3 F204AC-63/0.3 F674-80/0.3 F674-100/0.3 F674-125/0.3	350 450 600 1200 1600 1600			
		500mA	25 40 63	F204AC-25/0.5 F204AC-40/0.5 F204AC-63/0.5	450 600 650			

Above devices are UL 1053 recognized and IEC 1008 approved.

Delivery Class

- A Standard item, stock to 2 weeks lead time
- B Stock to 4 weeks lead time
- C 6 to 8 week lead time

END OF TECHNICAL DOCUMENTATION